日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知常數(shù)a、b、c都是實(shí)數(shù),函數(shù)f(x)=
          x3
          3
          +
          a
          2
          x2+bx+c
          的導(dǎo)函數(shù)為f′(x)
          (Ⅰ)設(shè)a=f′(2),b=f′(1),c=f′(0),求函數(shù)f(x)的解析式;
          (Ⅱ)設(shè) f′(x)=(x-γ)(x-β),且1<γ≤β<2,求f′(1)•f′(2)的取值范圍.
          分析:(I)先對(duì)函數(shù)求導(dǎo),然后根據(jù)a=f′(2),b=f′(1),c=f′(0),代入可求a,b,c,進(jìn)而可求函數(shù)f(x)
          (II)由f′(x)=(x-γ)(x-β),及 1<γ≤β<2,可得f′(1)•f′(2)=(1-γ)(1-β)(2-γ)(2-β)=[(γ-1)(2-γ)]•[(β-1)(2-β)],分別利用基本不等式可求取值范圍
          解答:(Ⅰ)解:由題意可得,f′(x)=x2+ax+b.
          4+2a+b=a
          1+a+b=b
          b=c
          ,
          解得:
          a=-1
          b=c=-3

          f(x)=
          x3
          3
          -
          1
          2
          x2-3x-3

          (II)∵f′(x)=(x-γ)(x-β).
          又 1<γ≤β<2,
          ∴f′(1)=(1-γ)(1-β)>0,f′(2)=(2-γ)(2-β)>0
          ∴f′(1)•f′(2)=(1-γ)(1-β)(2-γ)(2-β)
          =[(γ-1)(2-γ)]•[(β-1)(2-β)]≤(
          γ-1+2-γ
          2
          )2•(
          β-1+2-β
          2
          )2=
          1
          16

          0<f′(1)•f′(2)≤
          1
          16
          點(diǎn)評(píng):本題主要考查了函數(shù)的導(dǎo)數(shù)的求解,利用待定系數(shù)法求解函數(shù)的解析式,及利用基本不等式求解函數(shù)的值域(最值),屬于函數(shù)的知識(shí)的綜合應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省中山市廣外大附設(shè)中山外語學(xué)校高三(上)數(shù)學(xué)寒假作業(yè)1(文科)(解析版) 題型:解答題

          已知常數(shù)a、b、c都是實(shí)數(shù),函數(shù)的導(dǎo)函數(shù)為f′(x)
          (Ⅰ)設(shè)a=f′(2),b=f′(1),c=f′(0),求函數(shù)f(x)的解析式;
          (Ⅱ)設(shè) f′(x)=(x-γ)(x-β),且1<γ≤β<2,求f′(1)•f′(2)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知常數(shù)a、b、c都是實(shí)數(shù),函數(shù)f(x)=
          x3
          3
          +
          a
          2
          x2+bx+c
          的導(dǎo)函數(shù)為f′(x)
          (Ⅰ)設(shè)a=f′(2),b=f′(1),c=f′(0),求函數(shù)f(x)的解析式;
          (Ⅱ)設(shè) f′(x)=(x-γ)(x-β),且1<γ≤β<2,求f′(1)•f′(2)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:廣東省同步題 題型:解答題

          已知常數(shù)a、b、c都是實(shí)數(shù),函數(shù)的導(dǎo)函數(shù)為f ′(x)
          (Ⅰ)設(shè)a=f ′(2),b=f ′(1),c=f ′(0),求函數(shù)f(x)的解析式;
          (Ⅱ)設(shè) f′(x)=(x﹣γ)(x﹣β),且1<γ≤β<2,求f ′(1)f ′(2)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知常數(shù)a、b、c都是實(shí)數(shù),函數(shù)f(x)=+x2+bx+c的導(dǎo)函數(shù)為f′(x).

          (1)設(shè)a=f′(2),b=f′(1),c=f′(0),求函數(shù)f(x)的解析式;

          (2)如果方程f′(x)=0的兩個(gè)實(shí)數(shù)根分別為γ、β,并且1<γ<β<2.問:是否存在正整數(shù)n0,使得|f′(n0)|≤?請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案