日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓(a>b>0)的左、右焦點分別是F1,F2,焦距為2c,若直線y=(x+c)與橢圓交于M點,且滿足∠MF1F2=2∠MF2F1,則橢圓的離心率是 ( )

          A. B. -1 C. D.

          【答案】B

          【解析】

          依題意知,直線y=(x+c)經(jīng)過橢圓的左焦點F1(-c,0),且傾斜角為60°,從而知∠MF2F1=30°,設(shè)|MF1|=x,利用橢圓的定義即可求得其離心率.

          ∵橢圓的方程為,作圖如右圖:
          ∵橢圓的焦距為2c,
          ∴直線 y=(x+c)經(jīng)過橢圓的左焦點F1(-c,0),又直線y=(x+c)與橢圓交于M點,
          ∴傾斜角∠MF1F2=60°,又∠MF1F2=2∠MF2F1,
          ∴∠MF2F1=30°,
          ∴∠F1MF2=90°.
          設(shè)|MF1|=x,則 ,|F1F2|=2c=2x,故x=c.
          ,
          又|MF1|+|MF2|=2a,
          ∴2a=( +1)c,
          ∴該橢圓的離心率

          故選:B.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若、是兩個相交平面,則在下列命題中,真命題的序號為( )

          若直線,則在平面內(nèi)一定不存在與直線平行的直線.

          若直線,則在平面內(nèi)一定存在無數(shù)條直線與直線垂直.

          若直線,則在平面內(nèi)不一定存在與直線垂直的直線.

          若直線,則在平面內(nèi)一定存在與直線垂直的直線.

          A. ①③ B. ②③ C. ②④ D. ①④

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的短軸長為2,離心率為,,分別是橢圓的右頂點和下頂點.

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2)已知是橢圓內(nèi)一點,直線的斜率之積為,直線分別交橢圓于兩點,記的面積分別為,.

          ①若兩點關(guān)于軸對稱,求直線的斜率;

          ②證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】給定橢圓C:(),稱圓心在原點O,半徑為的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率,點C上.

          (1)求橢圓C的方程和其“衛(wèi)星圓”方程;

          (2)點P是橢圓C的“衛(wèi)星圓”上的一個動點,過點P作直線,使得,與橢圓C都只有一個交點,且,分別交其“衛(wèi)星圓”于點M,N,證明:弦長為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓,直線經(jīng)過點,直線經(jīng)過點,直線直線,且直線分別與橢圓相交于兩點和兩點.

          ()分別為橢圓的左、右焦點,且直線軸,求四邊形的面積;

          ()若直線的斜率存在且不為0,四邊形為平行四邊形,求證:;

          ()()的條件下,判斷四邊形能否為矩形,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正方體,點, , 分別是線段, 上的動點,觀察直線 .給出下列結(jié)論:

          ①對于任意給定的點,存在點,使得;

          ②對于任意給定的點,存在點,使得;

          ③對于任意給定的點,存在點,使得;

          ④對于任意給定的點,存在點,使得

          其中正確結(jié)論的個數(shù)是( ).

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱中,,中點.

          (1)求證:平面;

          (2)求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)在點處切線的斜率為4,求實數(shù)的值;

          (2)求函數(shù)的單調(diào)區(qū)間;

          (3)若函數(shù)上是減函數(shù),求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】臨近開學(xué)季,某大學(xué)城附近的一款網(wǎng)紅書包銷售火爆,其成本是每件15元.經(jīng)多數(shù)商家銷售經(jīng)驗,這款書包在未來1個月(按30天計算)的日銷售量(個)與時間(天)的關(guān)系如下表所示:

          時間(/天)

          1

          4

          7

          11

          28

          日銷售量(/個)

          196

          184

          172

          156

          88

          未來1個月內(nèi),前15天每天的價格(元/個)與時間(天)的函數(shù)關(guān)系式為(且為整數(shù)),后15天每天的價格(元/個)與時間(天)的函數(shù)關(guān)系式為(且為整數(shù)).

          1)認真分析表格中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、反比例函數(shù)的知識確定一個滿足這些數(shù)據(jù)(個)與(天)的關(guān)系式;

          2)試預(yù)測未來1個月中哪一天的日銷售利潤最大,最大利潤是多少?

          3)在實際銷售的第1周(7天),商家決定每銷售1件商品就捐贈元利潤給該城區(qū)養(yǎng)老院.商家通過銷售記錄發(fā)現(xiàn),這周中,每天扣除捐贈后的日銷售利潤隨時間(天)的增大而增大,求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案