日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知是二次函數(shù),是它的導(dǎo)函數(shù),且對任意的,恒成立.

          (1)求的解析表達(dá)式;

          (2)設(shè),曲線在點(diǎn)處的切線為與坐標(biāo)軸圍成的三角形面積為.求的最小值.

           

          【答案】

          (1)(2)

          【解析】本題主要考查二次函數(shù)的概念、導(dǎo)數(shù)的應(yīng)用等知識,以及運(yùn)算求解能力.在解答過程當(dāng)中,求導(dǎo)的能力、運(yùn)算的能力、問題轉(zhuǎn)換的能力以及數(shù)形結(jié)合的能力都得到了充分的體現(xiàn),值得同學(xué)們體會反思.

          (1)可以現(xiàn)設(shè)出二次函數(shù)的表達(dá)式,結(jié)合信息獲得多項式相等進(jìn)而利用對應(yīng)系數(shù)相等解得參數(shù),即可明確函數(shù)解析式;

          (2)結(jié)合函數(shù)的解析式通過求導(dǎo)很容易求的在點(diǎn)P(t,f(t))處的切線l,由此即可表示出三角形的面積關(guān)于t的函數(shù)S(t).從而利用導(dǎo)函數(shù)知識即可求得函數(shù)S(t)的最小值

          解:(Ⅰ)設(shè)(其中),則,     ………1分

          由已知,得,

          ,解之,得,,,∴.  ……4分

          (2)由(1)得,,切線的斜率

          ∴切線的方程為,即.    …………6分

          從而軸的交點(diǎn)為,軸的交點(diǎn)為,

          (其中).                          ………8分

          .                  ……………10分

          當(dāng)時,是減函數(shù);

          當(dāng)時,,是增函數(shù).                  ……12分

          .                         …………13分

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:013

          已知:二次函數(shù)y=(k+1)x2-2(k-1)x+3(k-1),它的圖象在x軸上截出的線段長是4,則k為

          [  ]

          A.k=0或k=-   B.k=0

          C.k=-       D.k=0或k=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012屆天津市高三第一次月考理科數(shù)學(xué)試卷 題型:解答題

          已知是二次函數(shù),是它的導(dǎo)函數(shù),且對任意的恒成立

          (Ⅰ)求的解析式;

          (Ⅱ)設(shè),曲線在點(diǎn)處的切線為與坐標(biāo)軸圍成的三角形面積為,求的最小值。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:單選題

          已知一個二次函數(shù)的對稱軸為x=2,它的圖象經(jīng)過點(diǎn)(2,3),且與某一次函數(shù)的圖象交于點(diǎn)(0,-1),那么已知的二次函數(shù)的解析式是


          1. A.
            f(x)=-x2-4x-1
          2. B.
            f(x)=-x2+4x+1
          3. C.
            f(x)=-x2+4x-1
          4. D.
            f(x)=x2-4x+1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本小題滿分12分)

          已知是二次函數(shù),是它的導(dǎo)函數(shù),且對任意的恒成立.

          (Ⅰ)求的解析表達(dá)式;

          (Ⅱ)設(shè),曲線在點(diǎn)處的切線為,與坐標(biāo)軸圍成的三角形面積為.求的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案