日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC將梯形DCFE折起,使得平面DCFE⊥平面ABCD.
          (1)證明:AC∥平面BEF;
          (2)求三棱錐D﹣BEF的體積;
          (3)求直線AF與平面BDF所求的角.

          【答案】
          (1)證明:如圖,取BF的中點M,設(shè)AC與BD交點為O,連接MO,ME.

          由題設(shè)知,CE DF,MO DF,∴CE MO,

          ∴四邊形OCEM為平行四邊形,∴EM∥CO,即EM∥AC.

          又AC平面BEF,EM平面BEF,

          ∴AC∥平面BEF


          (2)解:∵平面CDFE⊥平面ABCD,平面CDFE∩平面ABCD=DC,BC⊥DC,

          ∴BC⊥平面DEF.

          ∴三棱錐D﹣BEF的體積為:


          (3)解:∵平面CDFE⊥平面ABCD,平面CDFE∩平面ABCD=DC,

          又FD⊥CD,∴FD⊥平面ABCD,

          又AC平面ABCD,∴AC⊥DF

          又在正方形ABCD中,AC⊥BD,BD∩DF=D,∴AC⊥平面BDF,

          連結(jié)FO,∵AF與平面BDF所成角為∠AFO,又AB=AD=DF=2,

          ,

          ,

          ∴直線AF與平面BDF所求的角為


          【解析】(1)取BF的中點M,設(shè)AC與BD交點為O,連接MO,ME,推導(dǎo)出四邊形OCEM為平行四邊形,從而EM∥AC,由此能證明AC∥平面BEF.(2)推導(dǎo)出BC⊥平面DEF,從而三棱錐D﹣BEF的體積為 ,由此能求出結(jié)果.(3)推導(dǎo)出FD⊥平面ABCD,AC⊥DF,AC⊥平面BDF,連結(jié)FO,則AF與平面BDF所成角為∠AFO,由此能求出直線AF與平面BDF所求的角的大。
          【考點精析】認(rèn)真審題,首先需要了解直線與平面平行的判定(平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行),還要掌握空間角的異面直線所成的角(已知為兩異面直線,A,C與B,D分別是上的任意兩點,所成的角為,則)的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)橢圓M: =1(a>b>0)的離心率為 ,點A(a,0),B(0,﹣b),原點O到直線AB的距離為
          (Ⅰ)求橢圓M的方程;
          (Ⅱ)設(shè)直線l:y=2x+m與橢圓M相交于C、D不同兩點,經(jīng)過線段CD上點E的直線與y軸相交于點P,且有 =0,| |=| |,試求△PCD面積S的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a,b,c分別為△ABC三內(nèi)角A,B,C的對邊,且滿足b+ccosA=c+acosC.
          (Ⅰ)求角A的大小;
          (Ⅱ)若△ABC的面積為 ,求△ABC的周長的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=3x+λ3x(λ∈R)
          (1)當(dāng)λ=﹣4時,求解方程f(x)=3;
          (2)根據(jù)λ的不同取值,討論函數(shù)的奇偶性,并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= x2+ax+1(a∈R). (Ⅰ)當(dāng)a= 時,求不等式f(x)<3的解集;
          (Ⅱ)當(dāng)0<x<2時,不等式f(x)>0恒成立,求實數(shù)a的取值范圍;
          (Ⅲ)求關(guān)于x的不等式f(x)﹣ a2﹣1>0的解集.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解某社區(qū)居民的家庭年收入所年支出的關(guān)系,隨機調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計數(shù)據(jù)表:

          收入x (萬元)

          8.2

          8.6

          10.0

          11.3

          11.9

          支出y (萬元)

          6.2

          7.5

          8.0

          8.5

          9.8

          據(jù)上表得回歸直線方程 = x+ ,其中 =0.76, = ,據(jù)此估計,該社區(qū)一戶收入為15萬元家庭年支出為(
          A.11.4萬元
          B.11.8萬元
          C.12.0萬元
          D.12.2萬元

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直三棱柱(側(cè)棱與底面垂直的棱柱)ABC﹣A1B1C1中,點G是AC的中點.

          (1)求證:B1C∥平面 A1BG;

          (2)若AB=BC, ,求證:AC1⊥A1B.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】邊長分別為1, ,2 的三角形的最大角與最小角的和是(
          A.90°
          B.120°
          C.135°
          D.150°

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】等差數(shù)列{an}滿足:a1=1,a2+a6=14;正項等比數(shù)列{bn}滿足:b1=2,b3=8.
          (Ⅰ) 求數(shù)列{an},{bn}的通項公式an , bn;
          (Ⅱ)求數(shù)列{anbn}的前n項和Tn

          查看答案和解析>>

          同步練習(xí)冊答案