日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若關(guān)于x的方程2cos2x-4sinx+4k+5=0有解,則實數(shù)k的取值范圍是
           
          分析:將原方程可化為k=(sinx+
          1
          2
          )2-2
          ,再由-1≤sinx≤1,求得-2≤(sinx+
          1
          2
          )2-2≤
          1
          4
          ,從而求得實數(shù)k范圍.
          解答:解:原方程可化為k=(sinx+
          1
          2
          )2-2

          ∵-1≤sinx≤1
          -2≤(sinx+
          1
          2
          )2-2≤
          1
          4

          ∴實數(shù)k的取值范圍是[-2,
          1
          4
          ]

          故答案為:[-2,
          1
          4
          ]
          點評:本題主要考查方程根的問題轉(zhuǎn)化為函數(shù)的值域求解,還涉及了三角函數(shù),二次函數(shù)值域的求法.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知向量
          m
          =(1,1),
          q
          =(1,0),<
          n
          p
          >=
          π
          2
          m
          n
          =-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
          (1)若關(guān)于x的方程sin(2x+
          π
          3
          )=
          m
          2
          在[0,B]上有相異實根,求實數(shù)m的取值范圍;
          (2)若向量
          p
          =(cosA,2cos2
          C
          2
          ),試求|
          n
          +
          p
          |的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2010•九江二模)已知函數(shù)f(x)=sin(
          π
          4
          x-
          π
          6
          )-2cos2
          π
          8
          x+1,x∈R

          (1)求函數(shù)f(x)的最小正周期及單調(diào)遞增區(qū)間;
          (2)若關(guān)于x的方程4f2(x)-mf(x)+1=0在x∈(
          4
          3
          ,4)
          內(nèi)有實數(shù)解,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若關(guān)于x的方程2cos2(π+x)-sinx+a=0有實根,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知向量數(shù)學(xué)公式=(1,1),數(shù)學(xué)公式=(1,0),<數(shù)學(xué)公式,數(shù)學(xué)公式>=數(shù)學(xué)公式數(shù)學(xué)公式=-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
          (1)若關(guān)于x的方程sin(2x+數(shù)學(xué)公式 )=數(shù)學(xué)公式 在[0,B]上有相異實根,求實數(shù)m的取值范圍;
          (2)若向量數(shù)學(xué)公式=(cosA,2cos2 數(shù)學(xué)公式),試求|數(shù)學(xué)公式|的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知向量
          m
          =(1,1),
          q
          =(1,0),<
          n
          ,
          p
          >=
          π
          2
          m
          n
          =-1;若△ABC的內(nèi)角A,B,C依次成等差數(shù)列,且A≤B≤C;
          (1)若關(guān)于x的方程sin(2x+
          π
          3
          )=
          m
          2
          在[0,B]上有相異實根,求實數(shù)m的取值范圍;
          (2)若向量
          p
          =(cosA,2cos2
          C
          2
          ),試求|
          n
          +
          p
          |的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案