日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】定義在R上的函數(shù)f(x)滿足 ,
          (1)求函數(shù)f(x)的解析式;
          (2)求函數(shù)g(x)的單調(diào)區(qū)間;
          (3)如果s、t、r滿足|s﹣r|≤|t﹣r|,那么稱s比t更靠近r.當a≥2且x≥1時,試比較 和ex1+a哪個更靠近lnx,并說明理由.

          【答案】
          (1)解:f′(x)=f′(1)e2x2+2x﹣2f(0),所以f′(1)=f′(1)+2﹣2f(0),即f(0)=1.又 ,

          所以f′(1)=2e2,所以f(x)=e2x+x2﹣2x.


          (2)解:∵f(x)=e2x﹣2x+x2,

          ,

          ∴g′(x)=ex﹣a.

          ①當a≤0時,g′(x)>0,函數(shù)f(x)在R上單調(diào)遞增;

          ②當a>0時,由g′(x)=ex﹣a=0得x=lna,

          ∴x∈(﹣∞,lna)時,g′(x)<0,g(x)單調(diào)遞減;x∈(lna,+∞)時,g′(x)>0,g(x)單調(diào)遞增.

          綜上,當a≤0時,函數(shù)g(x)的單調(diào)遞增區(qū)間為(∞,∞);

          當a>0時,函數(shù)g(x)的單調(diào)遞增區(qū)間為(lna,+∞),單調(diào)遞減區(qū)間為(﹣∞,lna)


          (3)解:解:設 ,∵ ,∴p(x)在x∈[1,+∞)上為減函數(shù),又p(e)=0,∴當1≤x≤e時,p(x)≥0,當x>e時,p(x)<0.∵ ,∴q′(x)在x∈[1,+∞)上為增函數(shù),又q′(1)=0,∴x∈[1,+∞)時,q'(x)≥0,∴q(x)在x∈[1,+∞)上為增函數(shù),∴q(x)≥q(1)=a+1>0.

          ① 當1≤x≤e時,

          ,則 ,∴m(x)在x∈[1,+∞)上為減函數(shù),

          ∴m(x)≤m(1)=e﹣1﹣a,

          ∵a≥2,∴m(x)<0,∴|p(x)|<|q(x)|,∴ 比ex1+a更靠近lnx.

          ②當x>e時, ,

          設n(x)=2lnx﹣ex1﹣a,則 , ,∴n′(x)在x>e時為減函數(shù),

          ,∴n(x)在x>e時為減函數(shù),∴n(x)<n(e)=2﹣a﹣ee1<0,

          ∴|p(x)|<|q(x)|,∴ 比ex1+a更靠近lnx.

          綜上:在a≥2,x≥1時, 比ex1+a更靠近lnx


          【解析】(1)求出函數(shù)的導數(shù),利用賦值法,求出f′(1)=f′(1)+2﹣2f(0),得到f(0)=1.然后求解f′(1),即可求出函數(shù)的解析式.(2)求出函數(shù)的導數(shù)g′(x)=ex+a,結(jié)合a≥0,a<0,分求解函數(shù)的單調(diào)區(qū)間即可.(3)構(gòu)造 ,通過函數(shù)的導數(shù),判斷函數(shù)的單調(diào)性,結(jié)合當1≤x≤e時,當1≤x≤e時,推出|p(x)|<|q(x)|,說明 比ex1+a更靠近lnx.當x>e時,通過作差,構(gòu)造新函數(shù),利用二次求導,判斷函數(shù)的單調(diào)性,證明 比ex1+a更靠近lnx.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù) 為自然對數(shù)的底數(shù)),且曲線在點處的切線平行于軸.

          (1)求的值;

          (2)求函數(shù)的極值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知向量 ,若f(x)=mn. (I)求f(x)的單調(diào)遞增區(qū)間;
          (II)己知△ABC的三內(nèi)角A,B,C對邊分別為a,b,c,且a=3,f ,sinC=2sinB,求A,c,b的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)=x(lnx﹣2ax)有兩個極值點,則實數(shù)a的取值范圍是(
          A.(﹣∞,
          B.(0,
          C.(0,
          D.( ,+∞)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知集合A是函數(shù)y=lg(20﹣8x﹣x2)的定義域,集合B是不等式x2﹣2x+1﹣a2≥0(a>0)的解集,p:x∈A,q:x∈B.

          (1)若A∩B=,求實數(shù)a的取值范圍;

          (2)若¬p是q的充分不必要條件,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知圓以原點為圓心,且圓與直線相切.

          (Ⅰ)求圓的方程;

          (Ⅱ)若直線與圓交于兩點,分別過、兩點作直線的垂線,交軸于、兩點,求線段的長.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】近年來,“共享單車”的出現(xiàn)為市民“綠色出行”提供了極大的方便,某共享單車公司“Mobike”計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入(單位:萬元)滿足,乙城市收益Q與投入(單位:萬元)滿足,設甲城市的投入為(單位:萬元),兩個城市的總收益為(單位:萬元).

          (1)當甲城市投資50萬元時,求此時公司總收益;

          (2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】現(xiàn)有個小球,甲、乙兩位同學輪流且不放回抓球,每次最少抓1個球,最多抓3個球,規(guī)定誰抓到最后一個球誰贏. 如果甲先抓,那么下列推斷正確的是(

          A. =4,則甲有必贏的策略 B. =6,則乙有必贏的策略

          C. =9,則甲有必贏的策略 D. =11,則乙有必贏的策略

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)當時,求證:;

          (2)當時,若不等式恒成立,求實數(shù)的取值范圍;

          (3)若,證明.

          查看答案和解析>>

          同步練習冊答案