日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知定義在[-3,3]上的函數(shù) ,(t為常數(shù)).
          (1)當t∈[2,6]時,求f(x)在[-2,0]上的最小值及取得最小值時的x;
          (2)當t≥6時,證明函數(shù)y=f(x)的圖象上至少有一點在直線y=8上.
          【答案】分析:(1)求出函數(shù)的導數(shù),研究函數(shù)f(x)在[-2,0]上的單調(diào)性,確定出最值的位置,求出最值及取得最值時的自變量;
          (2)t≥6時,研究函數(shù)的單調(diào)性,求出函數(shù)在定義在[-3,3]上最大值,將此最值與8比較即可得出所要證明的結論成立與否
          解答:解:(1)f'(x)=t-
          ∵2≤t≤6∴
          x-
          f'(x)-+-
          f(x)極小值極大值
          時,即t=6時,f(x)在上是增函數(shù),
          即2<t<6時,f(x)在減,在上增
          ∴f(x)在[-2,0]上最小值為,此時x=-
          (2)由(1)可知f(x)在上增,
          時,f(x)在[-3,3]上最大值為f(3)=3t-=27>8
          時,f(x)在[0,3]上最大值為,=8
          又f(0)=0,
          ∴y=f(x)的圖象上至少有一點在直線y=8上
          點評:本題考查利用導數(shù)求閉區(qū)間上的最值,解題的關鍵是利用導數(shù)研究清楚函數(shù)的單調(diào)性,確定出最值取到的位置,求出最值,本題第二小題將圖象在直線上方的問題轉(zhuǎn)化為函數(shù)值的比較,解題時注意這一技巧的運用,本題運算量比較大,解題時要注意嚴謹運算,莫因為運算出錯導致解題失敗
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          已知定義在[-3,3]上的函數(shù)y=f(x)滿足條件:對于任意的x,y∈R,都有f(x+y)=f(x)+f(y).當x>0時,f(x)<0.
          (1)求證:函數(shù)f(x)是奇函數(shù);
          (2)求證:函數(shù)f(x)在[-3,3]上是減函數(shù);
          (3)解不等式f(2x-1)+f(3x+2)<0.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知定義在[-3,3]上的函數(shù) y=tx-
          12
          x3
          ,(t為常數(shù)).
          (1)當t∈[2,6]時,求f(x)在[-2,0]上的最小值及取得最小值時的x;
          (2)當t≥6時,證明函數(shù)y=f(x)的圖象上至少有一點在直線y=8上.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知定義在[-3,3]上的函數(shù) 數(shù)學公式,(t為常數(shù)).
          (1)當t∈[2,6]時,求f(x)在[-2,0]上的最小值及取得最小值時的x;
          (2)當t≥6時,證明函數(shù)y=f(x)的圖象上至少有一點在直線y=8上.

          查看答案和解析>>

          科目:高中數(shù)學 來源:不詳 題型:解答題

          已知定義在[-3,3]上的函數(shù) y=tx-
          1
          2
          x3
          ,(t為常數(shù)).
          (1)當t∈[2,6]時,求f(x)在[-2,0]上的最小值及取得最小值時的x;
          (2)當t≥6時,證明函數(shù)y=f(x)的圖象上至少有一點在直線y=8上.

          查看答案和解析>>

          同步練習冊答案