日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在直角梯形ABCD中,∠B=90°,DC∥AB,BC=CD=
          12
          AB=2,G為線段AB的中點,將△ADG沿GD折起,使平面ADG⊥平面BCDG,得到幾何體A-BCDG.
          (1)若E,F(xiàn)分別為線段AC,AD的中點,求證:EF∥平面ABG;
          (2)求三棱錐C-ABD的體積.
          分析:(1)利用三角形的中位線定理和線面平行的判定定理即可證明;
          (2)先證明AG⊥底面BCD,再利用V三棱錐C-ABD=V三棱錐A-BCD即可求出.
          解答:解(1)∵折疊前后CD、BG的位置關(guān)系不變,∴CD∥BG.
          ∵在△ACD中,E、F分別為AC、BD的中點,∴EF∥CD.
          ∴EF∥BG.
          又∵EF?平面ABG,BG?平面ABG,
          ∴EF∥平面ABG.
          (2)∵BC=CD=
          1
          2
          AB=2,G為線段AB的中點,∴CD=BG,
          又∵∠B=90°,CD∥BG,∴四邊形BCDG是一個正方形,∴BG⊥DG,AG⊥DG,
          折疊后仍然成立,
          ∵平面ADG⊥平面BCDG,∴AG⊥平面BCDG.
          ∴V三棱錐C-ABD=V三棱錐A-BCD=
          1
          3
          AG×S△BCD
          =
          1
          3
          ×2×
          1
          2
          ×2×2
          =
          4
          3
          點評:熟練掌握三角形的中位線定理、線面平行的判定定理及面面、線面垂直的判定和性質(zhì)定理是解題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,SD=
          2
          a.
          (Ⅰ)求證:平面SAB⊥平面SAD;
          (Ⅱ)設(shè)SB的中點為M,且DM⊥MC,試求出四棱錐S-ABCD的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2.點E、F分別是PC、BD的中點,現(xiàn)將△PDC沿CD折起,使PD⊥平面ABCD,
          (1)求證:EF∥平面PAD;
          (2)求點A到平面PBC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,AD=CD=1,AB=3,動點P在BCD內(nèi)運動(含邊界),設(shè)
          AP
          AD
          AB
          ,則α+β的最大值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P為CD的中點,則
          PA
          PB
          的值為
          5
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AD=1,AB=2,CD=3,E、F分別為線段CD、AB上的點,且EF∥AD.將梯形沿EF折起,使得平面ADEF⊥平面BCEF,折后BD與平面ADEF所成角正切值為
          2
          2

          (Ⅰ)求證:BC⊥平面BDE;
          (Ⅱ)求平面BCEF與平面ABD所成二面角(銳角)的大。

          查看答案和解析>>

          同步練習(xí)冊答案