【題目】已知函數(shù)
(1)當(dāng)時,求曲線
在點(diǎn)
處的切線方程;
(2)當(dāng)時,討論
的單調(diào)性.
【答案】(1);(2)詳見解析.
【解析】試題分析:本題主要考查導(dǎo)數(shù)的運(yùn)算、利用導(dǎo)數(shù)求曲線的切線方程、利用導(dǎo)數(shù)求函數(shù)的單調(diào)性等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、計(jì)算能力.第一問,先將代入得到
表達(dá)式,對
求導(dǎo),將切點(diǎn)的橫坐標(biāo)2代入
中得到切線的斜率k,再將切點(diǎn)的橫坐標(biāo)2代入到
中,得到切點(diǎn)的縱坐標(biāo),最后利用點(diǎn)斜式寫出切線方程;第二問,討論
的單調(diào)性即討論
的正負(fù),即討論導(dǎo)數(shù)表達(dá)式分子的正負(fù),所以構(gòu)造函數(shù)
,通過分析題意,將
分成
、
、
、
多種情況,分類討論,判斷
的正負(fù),從而得到
的單調(diào)性.
試題解析:(1)當(dāng)時,
6分
(2)因?yàn)?/span>,
所以,
令8分
(i)當(dāng)a=0時,
所以當(dāng)時g(x)>0,
此時函數(shù)
單調(diào)遞減,
x∈(1,∞)時,g(x)<0, 此時函數(shù)f,(x)單調(diào)遞增。
(ii)當(dāng)時,由
,解得:
10分
①若,函數(shù)f(x)在
上單調(diào)遞減, 11分
②若,在
單調(diào)遞減,在
上單調(diào)遞增.
③ 當(dāng)a<0時,由于1/a-1<0,
x∈(0,1)時,g(x)>0,此時,函數(shù)f(x)單調(diào)遞減;
x∈(1,∞)時,g(x)<0 , ,此時函數(shù)
單調(diào)遞增。
綜上所述:
當(dāng)a≤ 0 時,函數(shù)f(x)在(0,1)上單調(diào)遞減;
函數(shù)f(x)在 (1, +∞) 上單調(diào)遞增
當(dāng)時,函數(shù)f(x)在(0, + ∞)上單調(diào)遞減
當(dāng)時,函數(shù)f(x)在
上單調(diào)遞減;
函數(shù) f(x)在上單調(diào)遞增; 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形的面積可無限接近圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”,劉徽得到了圓周率精確到小數(shù)點(diǎn)后兩位的近似值3.14,這就是著名的“徽率”,利用劉徽的“割圓術(shù)”思想設(shè)計(jì)的一個程序框圖,則輸出的值為( )
(參考數(shù)據(jù): )
A. 12 B. 24 C. 48 D. 96
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱中,
為正三角形,點(diǎn)
在棱
上,且
,點(diǎn)
,
分別為棱
,
的中點(diǎn).
(1)證明:平面
;
(2)若,求直線
與平面
所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,點(diǎn)
的坐標(biāo)為
,直線
的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)
為極點(diǎn),以
軸的非負(fù)半軸為極軸,選擇相同的單位長度建立極坐標(biāo)系,圓
極坐標(biāo)方程為
.
(Ⅰ)當(dāng)時,求直線
的普通方程和圓
的直角坐標(biāo)方程;
(Ⅱ)直線與圓
的交點(diǎn)為
、
,證明:
是與
無關(guān)的定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,點(diǎn)
在橢圓
上.
(1)求橢圓的方程;
(2)經(jīng)過橢圓的右焦點(diǎn)
的直線
與橢圓
交于
、
兩點(diǎn),
、
分別為橢圓
的左、右頂點(diǎn),記
與
的面積分別為
和
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為
(
為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線的普通方程,并說明其表示什么軌跡;
(2)若直線的極坐標(biāo)方程為
,試判斷直線
與曲線
的位置關(guān)系,若相交,請求出其弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:
的左焦點(diǎn)為
,上頂點(diǎn)為
,長軸長為
,
為直線
:
上的動點(diǎn),
,
.當(dāng)
時,
與
重合.
(1)若橢圓的方程;
(2)若直線交橢圓
于
,
兩點(diǎn),若
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com