【題目】【2018貴州遵義市高三上學(xué)期第二次聯(lián)考】設(shè)拋物線的準(zhǔn)線與
軸交于
,拋物線的焦點(diǎn)為
,以
為焦點(diǎn),離心率
的橢圓與拋物線的一個(gè)交點(diǎn)為
;自
引直線交拋物線于
兩個(gè)不同的點(diǎn),設(shè)
.
(Ⅰ)求拋物線的方程和橢圓的方程;
(Ⅱ)若,求
的取值范圍.
【答案】(Ⅰ)橢圓的方程為;拋物線的方程是:
.(Ⅱ)
.
【解析】試題分析:
(Ⅰ) 設(shè)橢圓的標(biāo)準(zhǔn)方程為,根據(jù)橢圓上的點(diǎn)及離心率可得關(guān)于
的方程組,求得
可得橢圓的方程;根據(jù)橢圓的焦點(diǎn)坐標(biāo)可得
,進(jìn)而可得拋物線方程.(Ⅱ)設(shè)出直線
的方程,與橢圓方程聯(lián)立消元后根據(jù)根與系數(shù)的關(guān)系及弦長(zhǎng)公式可得
,再根據(jù)
的范圍,利用函數(shù)的有關(guān)知識(shí)求得
的范圍即可.
試題解析:
(Ⅰ)設(shè)橢圓的標(biāo)準(zhǔn)方程為,
由題意得,解得
,
∴橢圓的方程為,
∴點(diǎn)的坐標(biāo)為
,
∴,
∴拋物線的方程是.
(Ⅱ)由題意得直線的斜率存在,設(shè)其方程為
,
由消去x整理得
(*)
∵直線與拋物線交于兩點(diǎn),
∴.
設(shè),
,
則①,
②.
∵,
,
∴
∴.③
由①②③消去得:
.
∴
,即
,
將代入上式得
,
∵單調(diào)遞減,
∴,即
,
∴,
∴,
即的求值范圍為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直三棱柱中,
,
,
,點(diǎn)
,
分別是
的中點(diǎn).
(Ⅰ)求證: 平面
;
(Ⅱ)若二面角的大小為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),在以原點(diǎn)為極點(diǎn),
軸正半軸為極軸的極坐標(biāo)系中,直線
的極坐標(biāo)方程為
.
(1)求的普通方程和
的傾斜角;
(2)設(shè)點(diǎn)和
交于
兩點(diǎn),求
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面
平面
,且
,
.四邊形
滿足
,
,
.
為側(cè)棱
的中點(diǎn),
為側(cè)棱
上的任意一點(diǎn).
(1)若為
的中點(diǎn),求證: 面
平面
;
(2)是否存在點(diǎn),使得直線
與平面
垂直? 若存在,寫出證明過(guò)程并求出線段
的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若時(shí),
,求
的最小值;
(Ⅱ)設(shè)數(shù)列的通項(xiàng)
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,底面
是邊長(zhǎng)為2的等邊三角形,平面
交
于點(diǎn)
,且
平面
.
(1)求證: ;
(2)若四邊形是正方形,且
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線的極坐標(biāo)方程是
,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為
軸的正半軸,建立平面直角坐標(biāo)系,直線
的參數(shù)方程是
(
為參數(shù)).
(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)若直線與曲線
相交于
兩點(diǎn),且
,求直線
的傾斜角
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲乙兩家公司都愿意聘用某求職者,這兩家公式的具體聘用信息如下:
(1)根據(jù)以上信息,如果你是該求職者,你會(huì)選擇哪一家公司?說(shuō)明理由;
(2)某課外實(shí)習(xí)作業(yè)小組調(diào)查了1000名職場(chǎng)人士,就選擇這兩家公司的意愿作了統(tǒng)計(jì),得到如下數(shù)據(jù)分布:
若分析選擇意愿與年齡這兩個(gè)分類變量,計(jì)算得到的的觀測(cè)值為
,測(cè)得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯(cuò)誤的概率的上限是多少?并用統(tǒng)計(jì)學(xué)知識(shí)分析,選擇意愿與年齡變量和性別變量哪一個(gè)關(guān)聯(lián)性更大?
附:
| ||||
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com