日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
          (1)請畫出該幾何體的三視圖;
          (2)求四棱錐B-CEPD的體積.
          分析:(1)由已知中底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.根據(jù)三視圖的定義,易得到該幾何體的三視圖;
          (2)由已知中PD⊥平面ABCD,且PD=AD=2EC=2,我們計算出棱錐的底面面積和高,代入棱體積公式,即可求出四棱錐B-CEPD的體積;
          解答:解:(1)該組合體的主視圖和側(cè)視圖如圖示:(3分)
          (2)∵PD平面ABCD,PD?平面PDCE
          ∴平面PDCE⊥平面ABCD
          ∵BC⊥CD
          ∴BC⊥平面PDCE(5分)
          ∵SPCDE=
          1
          2
          (PD+EC)•DC=3(6分)
          ∴四棱錐B-CEPD的體積
          V=
          1
          3
          •SPCDE•BC=2.(8分)
          點評:本題考查的知識點是簡單空間圖形的三視圖,棱錐的體積,熟練掌握空間幾何圖形的幾何特征,三視圖的定義及畫法,棱錐的體積公式是解答本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
          (1)答題卡指定的方框內(nèi)已給出了該幾何體的俯視圖,請在方框內(nèi)畫出該幾何體的正(主)視圖和側(cè)(左)視圖;
          (2)求四棱錐B-CEPD的體積;
          (3)求證:BE∥平面PDA.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC,
          (1)求證:BE∥平面PDA;
          (2)若N為線段PB的中點,求證:EN⊥平面PDB;
          (3)若
          PD
          AD
          =
          2
          ,求平面PBE與平面ABCD所成的二面角的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC,
          (1)求證:BE∥平面PDA;
          (2)若N為線段PB的中點,求證:EN⊥平面PDB.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖為一簡單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=2EC.
          (1)求證:BE∥平面PDA;
          (2)若平面PBE與平面ABCD所成的二面角為45°,則線段PD是線段AD的幾倍?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖為一簡單組合體,其底面 ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.
          (1)求證:BE∥平面PDA;
          (2)求四棱錐B-CEPD的體積.

          查看答案和解析>>

          同步練習(xí)冊答案