日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C:  (a>b>0)的兩個焦點和短軸的兩個端點都在圓上.
          (I)求橢圓C的方程;
          (II)若斜率為k的直線過點M(2,0),且與橢圓C相交于A, B兩點.試探討k為何值時,三角形OAB為直角三角形.
          (I)  (II)

          試題分析:(I)由已知可得b=c=1,再由a2=b2+c2,解出a即可.
          (II)設(shè)A(x1,y1),B(x2,y2),直線AB的方程為y=k(x-2),代入橢圓中,得到關(guān)于x的一元二次方程,由判別式求出k的取值范圍,和用k表示的x1+x2,x1x2的表達式,然后分以O(shè)或A或B為直角頂點,根據(jù)向量垂直的坐標(biāo)表示的充要條件列出關(guān)于k的方程,求解即可.
          試題解析:(Ⅰ)  ,所以橢圓方程為 
          (Ⅱ)由已知直線AB的斜率存在,設(shè)AB的方程為: 
             得 
          ,得:,即 
          設(shè) 
          (1)若為直角頂點,則 ,即 ,
          ,所以上式可整理得,
          ,解,得,滿足 
          (2)若為直角頂點,不妨設(shè)以為直角頂點,,則滿足:
          ,解得,代入橢圓方程,整理得, 
          解得,,滿足 
          時,三角形為直角三角形  
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在直角坐標(biāo)系中,點到兩點的距離之和等于4,設(shè)點的軌跡為,直線交于兩點.
          (1)寫出的方程;
          (2) ,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,已知,,,直線與線段、分別交于點.

          (1)當(dāng)時,求以為焦點,且過中點的橢圓的標(biāo)準(zhǔn)方程;
          (2)過點作直線于點,記的外接圓為圓.
          ①求證:圓心在定直線上;
          ②圓是否恒過異于點的一個定點?若過,求出該點的坐標(biāo);若不過,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓:)上任意一點到兩焦點距離之和為,離心率為,左、右焦點分別為,,點是右準(zhǔn)線上任意一點,過作直 線的垂線交橢圓于點.

          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)證明:直線與直線的斜率之積是定值;
          (3)點的縱坐標(biāo)為3,過作動直線與橢圓交于兩個不同點,在線段上取點,滿足,試證明點恒在一定直線上.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓的對稱中心為坐標(biāo)原點,上焦點為,離心率.

          (Ⅰ)求橢圓的方程;
          (Ⅱ)設(shè)軸上的動點,過點作直線與直線垂直,試探究直線與橢圓的位置關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知拋物線的焦點以及橢圓的上、下焦點及左、右頂點均在圓上.
          (1)求拋物線和橢圓的標(biāo)準(zhǔn)方程;
          (2)過點的直線交拋物線兩不同點,交軸于點,已知,則
          是否為定值?若是,求出其值;若不是,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知橢圓E:=1(a>b>0)的右焦點為F(3,0),過點F的直線交E于A,B兩點.若AB的中點坐標(biāo)為(1,-1),則E的方程為(   )
          A.=1B.=1C.=1D.=1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          已知是雙曲線的兩個頂點,點是雙曲線上異于的一點,連接為坐標(biāo)原點)交橢圓于點,如果設(shè)直線的斜率分別為,且,假設(shè),則的值為(  )
          A.1B.C.2D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          已知橢圓過點,上、下焦點分別為,
          向量.直線與橢圓交于兩點,線段中點為
          (1)求橢圓的方程;
          (2)求直線的方程;
          (3)記橢圓在直線下方的部分與線段所圍成的平面區(qū)域(含邊界)為,若曲線
          與區(qū)域有公共點,試求的最小值.

          查看答案和解析>>

          同步練習(xí)冊答案