日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 3、函數(shù)f(x)=ax3+bx2-2x(a、b∈R且ab≠0)的圖象如如圖所示,且x1+x2<0,則有( 。
          分析:由圖象可以看出函數(shù)相應(yīng)的方程有三個(gè)根,故可將其方程設(shè)為f(x)=ax(x-x1)(x-x2),由圖象可以判斷出,參數(shù)a>0,再由同一性可知b=-a(x1+x2),進(jìn)而可以判斷出參數(shù)b的取值范圍.
          解答:解:由題圖可設(shè)設(shè)f(x)=ax(x-x1)(x-x2
          =ax[x2-(x1+x2)x+x1x2]
          =ax3-a(x1+x2)x2+ax1x2x
          =ax3+bx2-2x,
          故b=-a(x1+x2),ax1x2=-2
          由題中圖象,知當(dāng)x>x2>0時(shí),f(x)>0,且x-x1>0,
          ∴a>0.
          又∵x1+x2<0,
          ∴b=-a(x1+x2)>0.
          故有a>0,b>0
          故選A.
          點(diǎn)評(píng):本題考點(diǎn)是函數(shù)的圖象,考查由函數(shù)的圖象的特征判斷出函數(shù)的參數(shù)的取值范圍.本題綜合性較強(qiáng),要注意挖掘圖象中的每一個(gè)特征,將其轉(zhuǎn)化為方程或不等式,研究參數(shù).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          有下列命題:
          ①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′.
          ②若函數(shù)h(x)=cos4x-sin4x,則h′(
          π12
          )=1
          ;
          ③若函數(shù)g(x)=(x-1)(x-2)…(x-2009)(x-2010),則g′(2010)=2009!.
          ④若三次函數(shù)f(x)=ax3+bx2+cx+d,則“a+b+c=0”是“f(x)有極值點(diǎn)”的充要條件.
          其中真命題的序號(hào)是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          18、已知函數(shù)f(x)=ax3-6ax2+b(x∈[-1,2])的最大值為3,最小值為-29,求a、b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).
          定義:(1)設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”;
          定義:(2)設(shè)x0為常數(shù),若定義在R上的函數(shù)y=f(x)對(duì)于定義域內(nèi)的一切實(shí)數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(x0,f(x0))對(duì)稱.
          己知f(x)=x3-3x2+2x+2,請(qǐng)回答下列問題:
          (1)求函數(shù)f(x)的“拐點(diǎn)”A的坐標(biāo)
           

          (2)檢驗(yàn)函數(shù)f(x)的圖象是否關(guān)于“拐點(diǎn)”A對(duì)稱,對(duì)于任意的三次函數(shù)寫出一個(gè)有關(guān)“拐點(diǎn)”的結(jié)論
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若函數(shù)f(x)=ax3-2x2+a2x在x=1處有極小值,則實(shí)數(shù)a等于
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知下表為函數(shù)f(x)=ax3+cx+d部分自變量取值及其對(duì)應(yīng)函數(shù)值,為了便于研究,相關(guān)函數(shù)值取非整數(shù)值時(shí),取值精確到0.01.
          x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
          y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
          根據(jù)表中數(shù)據(jù),研究該函數(shù)的一些性質(zhì):
          (1)判斷f(x)的奇偶性,并證明;
          (2)判斷f(x)在[0.55,0.6]上是否存在零點(diǎn),并說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案