日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓C的方程為數(shù)學(xué)公式
          (1)求橢圓C的離心率的取值范圍;
          (2)若橢圓C與橢圓2x2+5y2=50有相同的焦點(diǎn),且過(guò)點(diǎn)M(4,1),求橢圓C的標(biāo)準(zhǔn)方程.

          解:(1)離心率…(1分)
          ∵a≥2b,∴,
          ,…(3分)
          又0<e<1,
          …(4分)
          (2)由2x2+5y2=50得,其焦點(diǎn)為…(5分)
          點(diǎn)M(4,1)在橢圓C上,
          ①…(6分)
          又a2-b2=15,即a2=b2+15②…(7分)
          代入①得b4-2b2-15=0,解得b2=5或b2=-3(舍去) …(9分)
          ∴a2=20,
          故所求橢圓C的方程為.…(10分)
          分析:(1)利用離心率公式,結(jié)合a≥2b及0<e<1,可確定橢圓C的離心率的取值范圍;
          (2)由2x2+5y2=50確定其焦點(diǎn),結(jié)合點(diǎn)M(4,1)在橢圓C上,即可求橢圓C的方程、
          點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查橢圓的幾何性質(zhì),熟練掌握橢圓幾何量之間的關(guān)系是關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C的方程為
          x2
          a2
          +
          y2
          b2
          =1(a≥2b>0)

          (1)求橢圓C的離心率的取值范圍;
          (2)若橢圓C與橢圓2x2+5y2=50有相同的焦點(diǎn),且過(guò)點(diǎn)M(4,1),求橢圓C的標(biāo)準(zhǔn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C的方程為
          x2
          a2
          y2
          b2
          =1
          (a>b>0),稱圓心在坐標(biāo)原點(diǎn)O,半徑為
          a2+b2
          的圓為橢圓C的“伴隨圓”,橢圓C的短軸長(zhǎng)為2,離心率為
          6
          3

          (Ⅰ)求橢圓C及其“伴隨圓”的方程;
          (Ⅱ)若直線l與橢圓C交于A,B兩點(diǎn),與其“伴隨圓”交于C,D兩點(diǎn),當(dāng)|CD|=
          13
           時(shí),求△AOB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•泉州模擬)已知橢圓C的方程為:
          x2
          a2
          +
          y2
          2
          =1 (a>0)
          ,其焦點(diǎn)在x軸上,離心率e=
          2
          2

          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)動(dòng)點(diǎn)P(x0,y0)滿足
          OP
          =
          OM
          +2
          ON
          ,其中M,N是橢圓C上的點(diǎn),直線OM與ON的斜率之積為-
          1
          2
          ,求證:x02+2
          y
          2
          0
          為定值.
          (3)在(2)的條件下,問(wèn):是否存在兩個(gè)定點(diǎn)A,B,使得|PA|+|PB|為定值?若存在,給出證明;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•衡陽(yáng)模擬)已知橢圓C的方程為
          y2
          a2
          +
          x2
          b2
          =1(a>b>0),離心率e=
          2
          2
          ,上焦點(diǎn)到直線y=
          a2
          c
          的距離為
          2
          2
          ,直線l與y軸交于一點(diǎn)P(0,m),與橢圓C交于相異兩點(diǎn)A,B且
          AP
          =t
          PB

          (1)求橢圓C的方程;
          (2)若
          OA
          +t
          OB
          =4
          OP
          ,求m的取值范圍•

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓C的方程為
          x 2
          4
          +
          y2
          3
          =1,過(guò)C的右焦點(diǎn)F的直線與C相交于A、B兩點(diǎn),向量
          m
          =(-1,-4),若向量
          OA
          -
          OB
          m
          -
          OF
          共線,則直線AB的方程是(  )

          查看答案和解析>>

          同步練習(xí)冊(cè)答案