日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,在三棱柱中,中點(diǎn),平面,平面與棱交于點(diǎn),

          (1)求證:;

          (2)求證:;

          (3)若與平面所成角的正弦值為,求的值.

          【答案】(1)見解析;(2)見解析;(3)

          【解析】

          (1)先證明平面,再證明.(2)建立空間直角坐標(biāo)系,設(shè),,利用向量證明,即證.(3)先利用向量法求得,再解方程即得的值.

          (1)證明:在三棱柱 中,

          側(cè)面 為平行四邊形,

          所以

          又因?yàn)?平面平面,

          所以 平面

          因?yàn)?平面,且平面平面,

          所以

          (2)證明:在中,因?yàn)?/span> ,的中點(diǎn), 所以

          因?yàn)?/span>平面,如圖建立空間直角坐標(biāo)系

          設(shè),在△ ,

          所以 ,所以 ,,

          所以 ,

          所以 ,所以

          (3)解:因?yàn)?/span> 所以 ,即

          因?yàn)?/span> ,所以

          設(shè)平面的法向量為

          因?yàn)?/span> ,即,

          ,則,,

          所以

          因?yàn)?

          所以 ,即 ,

          所以 ,即

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)討論函數(shù)的單調(diào)性;

          (2)定義:“對(duì)于在區(qū)域上有定義的函數(shù),若滿足恒成立,則稱曲線為曲線在區(qū)域上的緊鄰曲線”.試問曲線與曲線是否存在相同的緊鄰直線,若存在,請(qǐng)求出實(shí)數(shù)的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知平面上動(dòng)點(diǎn)到點(diǎn)的距離與到直線的距離之比為,記動(dòng)點(diǎn)的軌跡為曲線.

          1)求曲線的方程;

          2)設(shè)是曲線上的動(dòng)點(diǎn),直線的方程為.

          ①設(shè)直線與圓交于不同兩點(diǎn), ,求的取值范圍;

          ②求與動(dòng)直線恒相切的定橢圓的方程;并探究:若是曲線 上的動(dòng)點(diǎn),是否存在直線 恒相切的定曲線?若存在,直接寫出曲線的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:極坐標(biāo)與參數(shù)方程

          在極坐標(biāo)系下,已知圓O和直線

          1求圓O和直線l的直角坐標(biāo)方程;

          2當(dāng)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】北京時(shí)間3月15日下午,谷歌圍棋人工智能與韓國(guó)棋手李世石進(jìn)行最后一輪較量, 獲得本場(chǎng)比賽勝利,最終人機(jī)大戰(zhàn)總比分定格.人機(jī)大戰(zhàn)也引發(fā)全民對(duì)圍棋的關(guān)注,某學(xué)校社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖(如圖所示),將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.

          (Ⅰ)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否有的把握認(rèn)為“圍棋迷”與性別有關(guān)?

          非圍棋迷

          圍棋迷

          合計(jì)

          10

          55

          合計(jì)

          (Ⅱ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名淡定生中的“圍棋迷”人數(shù)為。若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.

          附: ,其中.

          0.05

          0.01

          3.841

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)的部分圖象如圖,是圖象的一個(gè)最低點(diǎn),圖象與軸的一個(gè)交點(diǎn)坐標(biāo)為,與軸的交點(diǎn)坐標(biāo)為.

          1)求,的值;

          2)關(guān)于的方程上有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】判斷下列存在量詞命題的真假:

          (1)有些實(shí)數(shù)是無(wú)限不循環(huán)小數(shù);

          (2)存在一個(gè)三角形不是等腰三角形;

          (3)有些菱形是正方形;

          (4)至少有一個(gè)整數(shù)4的倍數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)的定義域?yàn)?/span>, , 當(dāng)時(shí),, 則函數(shù)在區(qū)間上的所有零點(diǎn)的和為( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)u(x)=

          (Ⅰ)若曲線u(x)與直線y=0相切,求a的值.

          (Ⅱ)若e+1<a<2e,設(shè)f(x)=|u(x)|﹣,求證:f(x)有兩個(gè)不同的零點(diǎn)x1,x2,且|x2﹣x1|<e.(e為自然對(duì)數(shù)的底數(shù))

          查看答案和解析>>

          同步練習(xí)冊(cè)答案