在長方體ABCD—A1B1C1D1中,AB=4,BC=3,CC1=2,如圖:
(1)求證:平面A1BC1∥平面ACD1;
(2)求(1)中兩個平行平面間的距離;
(3)求點B1到平面A1BC1的距離.
(1)同解析 (2) 兩平行平面間的距離為. (3) B1到平面A1BC1的距離等于
.
.(1)證明:由于BC1∥AD1,則BC1∥平面ACD1
同理,A1B∥平面ACD1,則平面A1BC1∥平面ACD1
(2)解:設兩平行平面A1BC1與ACD1間的距離為d,則d等于D1到平面A1BC1的距離.易求A1C1=5,A1B=2,BC1=
,則cosA1BC1=
,則sinA1BC1=
,則S
=
,由于
,則
S
·d=
·BB1,代入求得d=
,即兩平行平面間的距離為
.
(3)解:由于線段B1D1被平面A1BC1所平分,則B1、D1到平面A1BC1的距離相等,則由(2)知點B1到平面A1BC1的距離等于.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com