日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設函數(shù)f(x)=ln(1+x),g(x)=xf′(x),x≥0,其中f′(x)是f(x)的導函數(shù).
          (1)g1(x)=g(x),gn+1(x)=g(gn(x)),n∈N+ , 求g1(x),g2(x),g3(x),并猜想gn(x)的表達式(不必證明);
          (2)若f(x)≥ag(x)恒成立,求實數(shù)a的取值范圍;
          (3)設n∈N+ , 比較g(1)+g(2)+…+g(n)與n﹣f(n)的大小,并用數(shù)學歸納法加以證明.

          【答案】
          (1)解:f′(x)= ,g(x)= ,

          猜想:gn(x)= (x≥0)


          (2)解:令h(x)=f(x)﹣ag(x)=ln(1+x)﹣ (x≥0),

          ∵f(x)≥ag(x)恒成立,∴hmin(x)≥0.

          h′(x)= =

          令h′(x)>0得x>a﹣1,

          當a﹣1≤0即a≤1時,h(x)在[0,+∞)上單調(diào)遞增,

          ∴hmin(x)=h(0)=0,符合題意;

          當a﹣1>0即a>1時,h(x)在[0,a﹣1)上單調(diào)遞減,在[a﹣1,+∞)上單調(diào)遞增,

          ∴hmin(x)=h(a﹣1)=lna﹣a+1,

          令φ(a)=lna﹣a+1(a>1),則φ′(a)= ﹣1<0,

          ∴φ(a)在(1,+∞)上單調(diào)遞減,

          ∴φ(a)<φ(1)=0,

          即hmin(x)<0,不符合題意.

          綜上,a的取值范圍是(﹣∞,1]


          (3)解:g(1)= ,1﹣f(1)=1﹣ln2,

          ∵ln2>ln = ,∴1﹣ln2< ,即g(1)>1﹣f(1),

          猜想:

          證明如下:

          (i)當n=1時,顯然猜想成立;

          (ii) 假設n=k時, 成立,

          當n=k+1時,左邊=

          欲證左邊>右邊,

          即證: ,

          即證:

          由(2)中的結論,令a=1得不等式:

          所以 成立

          即n=k+1時,猜想成立.

          由(i) (ii) 對一切n∈N+,不等式 成立


          【解析】(1)求出g(x)的解析式,依次計算即可得出猜想;(2)令h(x)=f(x)﹣ag(x)=ln(1+x)﹣ (x≥0),對a進行討論,求出h(x)的最小值,令hmin(x)≥0恒成立即可;(3)比較g(1)與1﹣f(1)猜測大小關系,利用(2)的結論進行證明.
          【考點精析】掌握歸納推理和數(shù)學歸納法的定義是解答本題的根本,需要知道根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理;數(shù)學歸納法是證明關于正整數(shù)n的命題的一種方法.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知直線l:kx﹣y+1+2k=0(k∈R) (Ⅰ)證明直線l經(jīng)過定點并求此點的坐標;
          (Ⅱ)若直線l不經(jīng)過第四象限,求k的取值范圍;
          (Ⅲ)若直線l交x軸負半軸于點A,交y軸正半軸于點B,O為坐標原點,設△AOB的面積為S,求S的最小值及此時直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】甲、乙兩組各有三名同學,他們在一次測驗中的成績的莖葉圖如圖所示,如果分別從甲、乙兩組中各隨機挑選一名同學,則這兩名同學成績相同的概率是

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)=ax﹣lnx(x∈(0,e]),其中e是自然常數(shù),a∈R.
          (Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間和極值;
          (Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知集合A={x|a﹣1<x<2a+1},B={x|0<x<1}
          (1)若a= ,求A∩B.
          (2)若A∩B=,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若a,b∈[﹣1,1],a+b≠0時,有 成立.
          (1)判斷f(x)在[﹣1,1]上的單調(diào)性,并證明它;
          (2)解不等式f(x2)<f(2x);
          (3)若f(x)≤m2﹣2am+1對所有的a∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設△ABC的三內(nèi)角A、B、C的對邊分別是a、b、c,且b(sinB﹣sinC)+(c﹣a)(sinA+sinC)=0 (Ⅰ)求角A的大。
          (Ⅱ)若a= ,sinC= sinB,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中抽取了200人進行抽樣分析,得到表格:(單位:人)

          經(jīng)常使用

          偶爾或不用

          合計

          30歲及以下

          70

          30

          100

          30歲以上

          60

          40

          100

          合計

          130

          70

          200

          (1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?

          (2)現(xiàn)從所抽取的30歲以上的網(wǎng)友中利用分層抽樣的方法再抽取5人.

          (i)分別求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);

          (ii)從這5人中,再隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.

          參考公式: ,其中.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          2.072

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知:sin230°+sin290°+sin2150°=
          sin25°+sin265°+sin2125°= ;
          sin212°+sin272°+sin2132°= ;
          通過觀察上述兩等式的規(guī)律,請你寫出一般性的命題,并給予的證明.

          查看答案和解析>>

          同步練習冊答案