日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知圓C:x2+y2-2x+4y+2=0,是否存在滿足以下兩個條件的直線l:
          (1)斜率為1;
          (2)直線被圓C截得的弦為AB,以AB為直徑的圓C1過原點.若存在這樣的直線,請求出其方程;若不存在,說明理由.
          分析:設(shè)直線l存在,其方程為y=x+b,它與圓C的交點設(shè)為A(x1,y1)、B(x2,y2),由
          x2+y2-2x+4y+2=0
          y=x+b
          ,得2x2+2(b+1)x+b2+4b+2=0,由OA⊥OB,得x1x2+y1y2=0,由此利用韋達定理能推導(dǎo)出存在這樣的直線l,并能求出其方程.
          解答:(本小題滿分15分)
          解:設(shè)直線l存在,其方程為y=x+b,它與圓C的交點設(shè)為A(x1,y1)、B(x2,y2)(2分)
          則由
          x2+y2-2x+4y+2=0
          y=x+b
          ,
          得2x2+2(b+1)x+b2+4b+2=0(*)(4分)
          x1+x2=-(b+1)
          x1x2=
          b2+4b+2
          2
          (6分)
          ∴y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2(8分)
          由OA⊥OB得x1x2+y1y2=0,(10分)
          2x1x2+b(x1+x2)+b2=0,(11分)
          即b2+4b+2-b(b+1)+b2=0,b2+3b+2=0,
          ∴b=-1或b=-2(13分)
          容易驗證b=-1或b=-2時方程(*)有實根.(14分)
          故存在這樣的直線l有兩條,其方程是y=x-1或y=x-2.(15分)
          點評:本題考查直線方程的求法,具體涉及到直線方程的性質(zhì)、圓的簡單性質(zhì)、韋達定理等基本知識點,解題時要認真審題,注意合理地進行等價轉(zhuǎn)化.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標(biāo)軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標(biāo)準(zhǔn)方程為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
          7
          ,求此圓方程.
          (2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
          (1)當(dāng)r=1時,試用k表示點B的坐標(biāo);
          (2)當(dāng)r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
          qp
          ,其中p、q均為整數(shù)且p、q互質(zhì))
          (3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
          當(dāng)0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準(zhǔn)線相切,若直線l:
          x
          a
          y
          b
          =1
          與圓C有公共點,且公共點都為整點(整點是指橫坐標(biāo).縱坐標(biāo)都是整數(shù)的點),那么直線l共有( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

          查看答案和解析>>

          同步練習(xí)冊答案