日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù).

          (Ⅰ)若.

          (。┣蠛瘮(shù)的極小值;

          (ⅱ)求函數(shù)在點(diǎn)處的切線方程.

          (Ⅱ)若函數(shù)上有極值,求a的取值范圍.

          【答案】(Ⅰ)(。,(ⅱ); (Ⅱ).

          【解析】

          (Ⅰ)(。┤,可得定義域,對其求導(dǎo),令,得其單調(diào)性,進(jìn)而求得極小值;

          (ⅱ)求得,與坐標(biāo),由直線的點(diǎn)斜式表示切線方程;

          (Ⅱ)求其求導(dǎo),構(gòu)造,將已知上有極值,等價于上兩個不等根,對方程參變分離,由不等式的簡單性質(zhì)得到的物質(zhì)范圍.也可以在函數(shù)圖象中利用特殊點(diǎn)位置與判別式求得答案.

          (Ⅰ)(。┤,則,其定義域為

          .

          當(dāng)時,;當(dāng)時,.

          所以函數(shù)有極小值

          (ⅱ),,切線方程為,即

          (Ⅱ)由題可知,.

          法一:記.

          上有極值,等價于上兩個不等根.

          ,

          所以.

          因為,所以.經(jīng)檢驗當(dāng)時,方程無重根.

          故函數(shù)上有極值時a的取值范圍為.

          法二:

          上有極值,等價于上兩個不等根,

          ,

          ③若,得,經(jīng)檢驗不成立

          ④若,得,經(jīng)檢驗不成立

          綜上所述,a的取值范圍為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了解甲、乙兩奶粉廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩奶粉廠生產(chǎn)的產(chǎn)品中分別抽取16件和5件,測量產(chǎn)品中微量元素的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):

          編號

          1

          2

          3

          4

          5

          170

          178

          166

          176

          180

          74

          80

          77

          76

          81

          (1)已知甲廠生產(chǎn)的產(chǎn)品共有96件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;

          (2)當(dāng)產(chǎn)品中的微量元素滿足時,該產(chǎn)品為優(yōu)等品.用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;

          (3)從乙廠抽出的上述5件產(chǎn)品中,隨機(jī)抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其均值(即數(shù)學(xué)期望).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年春節(jié)期間.當(dāng)紅彩視明星翟天臨“不知“知網(wǎng)””學(xué)術(shù)不端事件在全國鬧得沸沸揚(yáng)揚(yáng),引發(fā)了網(wǎng)友對亞洲最大電影學(xué)府北京電影學(xué)院、乃至整個中國學(xué)術(shù)界高等教育亂象的反思.為進(jìn)一步端正學(xué)風(fēng),打擊學(xué)術(shù)造假行為,教育部日前公布的《教育部2019年部門預(yù)算》中透露,2019年教育部擬抽檢博士學(xué)位論文約6000篇,預(yù)算為800萬元.國務(wù)院學(xué)位委員會、教育部2014年印發(fā)的《博士碩士學(xué)位論文抽檢辦法》通知中規(guī)定:每篇抽檢的學(xué)位論文送3位同行專家進(jìn)行評議,3位專家中有2位以上(含2位)專家評議意見為“不合格”的學(xué)位論文.將認(rèn)定為“存在問題學(xué)位論文”。有且只有1位專家評議意見為“不合格”的學(xué)位論文,將再送2位同行專家進(jìn)行復(fù)評.2位復(fù)評專家中有1位以上(含1位)專家評議意見為“不合格”的學(xué)位論文,將認(rèn)定為“存在問題學(xué)位論文”。設(shè)毎篇學(xué)位論文被毎位專家評議為“不合格”的槪率均為,且各篇學(xué)位論文是否被評議為“不合格”相互獨(dú)立.

          (1)記一篇抽檢的學(xué)位論文被認(rèn)定為“存在問題學(xué)位論文”的概率為,求;

          (2)若擬定每篇抽檢論文不需要復(fù)評的評審費(fèi)用為900元,需要復(fù)評的評審費(fèi)用為1500元;除評審費(fèi)外,其它費(fèi)用總計為100萬元。現(xiàn)以此方案實施,且抽檢論文為6000篇,問是否會超過預(yù)算?并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè),分別為內(nèi)角,的對邊.已知,,且,則( )

          A. 1B. 2C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在五面體中,側(cè)面是正方形,是等腰直角三角形,點(diǎn)是正方形對角線的交點(diǎn),.

          (1)證明:平面;

          (2)若側(cè)面與底面垂直,求五面體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,直線經(jīng)過橢圓的左焦點(diǎn).

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)若直線軸交于點(diǎn),、是橢圓上的兩個動點(diǎn),且它們在軸的兩側(cè),的平分線在軸上,|,則直線是否過定點(diǎn)?若過定點(diǎn),求出定點(diǎn)坐標(biāo);若不過定點(diǎn),請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù))的圖象在處的切線為為自然對數(shù)的底數(shù))

          (1)求的值;

          (2)若,且對任意恒成立,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】己知函數(shù),其中.

          (Ⅰ)討論函數(shù)的單調(diào)性;

          (Ⅱ)設(shè),,若存在,對任意的實數(shù),恒有成立,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的右焦點(diǎn)為,離心率為。

          1)求橢圓的標(biāo)準(zhǔn)方程;

          2是橢圓上不同的三點(diǎn),若直線的斜率之積為,試問從兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出這個定值;若不是,請說明理由。

          查看答案和解析>>

          同步練習(xí)冊答案