日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線與圓Cn:x2+y2=2an+n+2(n∈N+)交于不同點(diǎn)An、Bn,其中數(shù)列an滿足:
          (Ⅰ)求數(shù)列an的通項(xiàng)公式;
          (Ⅱ)設(shè),求數(shù)列bn的前n項(xiàng)和Sn
          【答案】分析:(I)由題意及數(shù)列{an}的已知的遞推關(guān)系,求出該數(shù)列的通項(xiàng)公式;
          (II)有數(shù)列{bn}的定義,在(I)的條件下是這一數(shù)列具體化,有通項(xiàng)公式選擇錯(cuò)位相減法求出新數(shù)列的前n項(xiàng)和.
          解答:解:(1)

          ∴易得an=3×2n-1-2
          (2),
          Sn=1×2+2×21+3×22++n×2n-1
          2Sn=1×21+2×22+3×23++n×2n
          相減得Sn=(n-1)2n+1
          點(diǎn)評(píng):此題重點(diǎn)考查了有數(shù)列{an}的遞推關(guān)系式,求其通項(xiàng)公式,還考查了利用錯(cuò)位相減法求數(shù)列{bn}的前n項(xiàng)和.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)C1,C2,…,Cn,…是坐標(biāo)平面上的一列圓,它們的圓心都在x軸的正半軸上,且都與直線y=
          3
          3
          x
          相切,對(duì)每一個(gè)正整數(shù)n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,已知{rn}為遞增數(shù)列.
          (Ⅰ)證明:{rn}為等比數(shù)列;
          (Ⅱ)設(shè)r1=1,求數(shù)列{
          n
          rn
          }
          的前n項(xiàng)和.精英家教網(wǎng)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知直線ln:y=x-
          2n
          與圓Cn:x2+y2=2an+n+2(n∈N+)交于不同點(diǎn)An、Bn,其中數(shù)列{an}滿足:a1=1,an+1=
          1
          4
          |AnBn|2
          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)設(shè)bn=
          n
          3
          (an+2),求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          設(shè)C1,C2,…,Cn,…是坐標(biāo)平面上的一列圓,它們的圓心都在x軸的正半軸上,且都與直線y=
          3
          3
          x
          相切,對(duì)每一個(gè)正整數(shù)n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,以(λn,0)表示Cn的圓心,已知{rn}為遞增數(shù)列.
          (1)證明{rn}為等比數(shù)列(提示:
          rn
          λn
          =sinθ
          ,其中θ為直線y=
          3
          3
          x
          的傾斜角);
          (2)設(shè)r1=1,求數(shù)列{
          n
          rn
          }
          的前n項(xiàng)和Sn;
          (3)在(2)的條件下,若對(duì)任意的正整數(shù)n恒有不等式Sn
          9
          4
          -
          an
          rn
          成立,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2009年高考數(shù)學(xué)第二輪執(zhí)點(diǎn)專題測(cè)試:數(shù)列 題型:044

          已知直線ln:y=x-與圓Cn:x2+y2=2an+n+2(n∈N+)交于不同點(diǎn)An、Bn,其中數(shù)列{an}滿足:

          (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

          (Ⅱ)設(shè)求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省中原名校高二(上)期中數(shù)學(xué)試卷(理科)(濟(jì)源一中)(解析版) 題型:解答題

          設(shè)C1,C2,…,Cn,…是坐標(biāo)平面上的一列圓,它們的圓心都在x軸的正半軸上,且都與直線相切,對(duì)每一個(gè)正整數(shù)n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,已知{rn}為遞增數(shù)列.
          (Ⅰ)證明:{rn}為等比數(shù)列;
          (Ⅱ)設(shè)r1=1,求數(shù)列的前n項(xiàng)和.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案