日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)C1,C2,…,Cn,…是坐標(biāo)平面上的一列圓,它們的圓心都在x軸的正半軸上,且都與直線y=
          3
          3
          x
          相切,對每一個(gè)正整數(shù)n,圓Cn都與圓Cn+1相互外切,以rn表示Cn的半徑,已知{rn}為遞增數(shù)列.
          (Ⅰ)證明:{rn}為等比數(shù)列;
          (Ⅱ)設(shè)r1=1,求數(shù)列{
          n
          rn
          }
          的前n項(xiàng)和.精英家教網(wǎng)
          分析:(1)求直線傾斜角的正弦,設(shè)Cn的圓心為(λn,0),得λn=2rn,同理得λn+1=2rn+1,結(jié)合兩圓相切得圓心距與半徑間的關(guān)系,得兩圓半徑之間的關(guān)系,即{rn}中rn+1與rn的關(guān)系,證明{rn}為等比數(shù)列;
          (2)利用(1)的結(jié)論求{rn}的通項(xiàng)公式,代入數(shù)列
          n
          rn
          ,然后用錯(cuò)位相減法求和.
          解答:解:(1)將直線y=
          3
          3
          x的傾斜角記為,則有tanθ=
          3
          3
          ,sinθ=
          1
          2
          ,
          設(shè)Cn的圓心為(λn,0),則由題意得知
          rn
          λn
          =
          1
          2
          ,得λn=2rn;同理
          λn+1=2rn+1,從而λn+1n+rn+rn+1=2rn+1,將λn=2rn代入,
          解得rn+1=3rn
          故|rn|為公比q=3的等比數(shù)列.
          (Ⅱ)由于r1=1,q=3,故rn=3n-1,從而
          n
          rn
          =n*31-n

          Sn=
          1
          r1
          +
          2
          r2
          ++
          n
          rn
          ,
          則有Sn=1+2•3-1+3•3-2+…+n•31-n
          Sn
          3
          =1*3-1+2*3-2+…+(n-1)*31-n+n*3-n

          ①-②,得
          2Sn
          3
          =1+3-1+3-2+…+31-n-n*3-n
           
          =
          1-3-n
          2
          3
          -n*3-n=
          3
          2
          -(n+
          3
          2
          )*3-n
          ,
          Sn=
          9
          4
          -
          1
          2
          (n+
          3
          2
          )*31-n=
          9-(2n+3)*31-n
          4
          點(diǎn)評:本題考查等比數(shù)列的基本知識,利用錯(cuò)位相減法求和等基本方法,考查抽象概括能力以及推理論證能力.對于數(shù)列與幾何圖形相結(jié)合的問題,通常利用幾何知識,并結(jié)合圖形,得出關(guān)于數(shù)列相鄰項(xiàng)an與an+1之間的關(guān)系,然后根據(jù)這個(gè)遞推關(guān)系,結(jié)合所求內(nèi)容變形,得出通項(xiàng)公式或其他所求結(jié)論.對于數(shù)列求和問題,若數(shù)列的通項(xiàng)公式由等差與等比數(shù)列的積構(gòu)成的數(shù)列時(shí),通常是利用前n項(xiàng)和Sn乘以公比,然后錯(cuò)位相減解決.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為A,P是橢圓C1上任意一點(diǎn),設(shè)該雙曲線C2:以橢圓C1的焦點(diǎn)為頂點(diǎn),頂點(diǎn)為焦點(diǎn),B是雙曲線C2在第一象限內(nèi)的任意一點(diǎn),且c=
          a2-b2

          (1)設(shè)
          PF1
          PF2
          的最大值為2c2,求橢圓離心率;
          (2)若橢圓離心率e=
          1
          2
          時(shí),是否存在λ,總有∠BAF1=λ∠BF1A成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)A.選修4-1:幾何證明選講
          銳角三角形ABC內(nèi)接于⊙O,∠ABC=60?,∠BAC=40?,作OE⊥AB交劣弧
          AB
          于點(diǎn)E,連接EC,求∠OEC.
          B.選修4-2:矩陣與變換
          曲線C1=x2+2y2=1在矩陣M=[
          12
          01
          ]的作用下變換為曲線C2,求C2的方程.
          C.選修4-4:坐標(biāo)系與參數(shù)方程
          P為曲線C1
          x=1+cosθ
          y=sinθ
          (θ為參數(shù))上一點(diǎn),求它到直線C2
          x=1+2t
          y=2
          (t為參數(shù))距離的最小值.
          D.選修4-5:不等式選講
          設(shè)n∈N*,求證:
          C
          1
          n
          +
          C
          2
          N
          +L+
          C
          N
          N
          n(2n-1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,橢圓C0
          x2
          a2
          +
          y2
          b2
          =1(a>b>0
          ,a,b為常數(shù)),動圓C1x2+y2=
          t
          2
          1
          ,b<t1<a.點(diǎn)A1,A2分別為C0的左,右頂點(diǎn),C1與C0相交于A,B,C,D四點(diǎn).
          (Ⅰ)求直線AA1與直線A2B交點(diǎn)M的軌跡方程;
          (Ⅱ)設(shè)動圓C2x2+y2=
          t
          2
          2
          與C0相交A′,B′,C′,D′四點(diǎn),其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:
          t
          2
          1
          +
          t
          2
          2
          為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請考生任選2題作答,滿分14分.如果多作,則按所做的前兩題計(jì)分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將選題號填入括號中.
          (1)選修4一2:矩陣與變換
          設(shè)矩陣M所對應(yīng)的變換是把坐標(biāo)平面上的點(diǎn)的橫坐標(biāo)伸長到2倍,縱坐標(biāo)伸長到3倍的伸縮變換.
          (Ⅰ)求矩陣M的特征值及相應(yīng)的特征向量;
          (Ⅱ)求逆矩陣M-1以及橢圓
          x2
          4
          +
          y2
          9
          =1
          在M-1的作用下的新曲線的方程.
          (2)選修4一4:坐標(biāo)系與參數(shù)方程
          已知直線C1
          x=1+tcosα
          y=tsinα
          (t為參數(shù)),C2
          x=cosθ
          y=sinθ
          (θ為參數(shù)).
          (Ⅰ)當(dāng)α=
          π
          3
          時(shí),求C1與C2的交點(diǎn)坐標(biāo);
          (Ⅱ)過坐標(biāo)原點(diǎn)O做C1的垂線,垂足為A,P為OA中點(diǎn),當(dāng)α變化時(shí),求P點(diǎn)的軌跡的參數(shù)方程.
          (3)選修4一5:不等式選講
          已知a,b,c均為正實(shí)數(shù),且a+b+c=1.求
          4a+1
          +
          4b+1
          +
          4c+1
          的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義:設(shè)P、Q分別為曲線C1和C2上的點(diǎn),把P、Q兩點(diǎn)距離的最小值稱為曲線C1到C2的距離.
          (1)求曲線C:y=x2到直線l:2x-y-4=0的距離;
          (2)若曲線C:(x-a)2+y2=1到直線l:y=x-1的距離為3,求實(shí)數(shù)a的值;
          (3)求圓O:x2+y2=1到曲線y=
          2x-3x-2
          (x>2)
          的距離.

          查看答案和解析>>

          同步練習(xí)冊答案