日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在直三棱柱ABC-A1B1C1(側(cè)棱和底面垂直的棱柱)中,有AC⊥AB,AC=AB=AA1=2,E,F(xiàn)分別是棱AB,A1C1的中點(diǎn).
          (I)證明:EF∥平面BCC1B1
          (II)求點(diǎn)C1到平面AFB1的距離.

          解:(Ⅰ)證明:如圖:作B1C1的中點(diǎn)D,連接FD、BD,
          FD∥A1B1,且FD=A1B1,F(xiàn)B∥A1B1,且FB=A1B1,∴FD∥EB,且FD=EB
          ∴四邊形FEBD是平行四邊形,∴FE∥BD
          又FE∥BD,BD?平面BCC1B1,∴FE∥平面BCC1B1,
          (Ⅱ)可以計(jì)算出AF=B1F=,AB1=2,所S,
          設(shè)點(diǎn)C1到平AFB1的距離為h,
          則由SAFB1×h=×,即可算得h=(13分)
          ∴點(diǎn)C1到平面AFB1的距離
          分析:(I)作B1C1的中點(diǎn)D,連接FD、BD,只要證明FE∥BD,即可證明FE∥平面BCC1B1;
          (II)設(shè)點(diǎn)C1到平AFB1的距離為h,由(I)知h是三棱錐C1-AFB1的高,先求出三角形AFB1的面積,再利用換低公式和體積相等求出C1到平面AFB1的距離.
          點(diǎn)評(píng):本題考查直線與平面平行的判定,點(diǎn)、線、面間的距離計(jì)算的知識(shí),考查了轉(zhuǎn)化思想和推理論證能力.特別注意的是求點(diǎn)到面的距離可用體積相等和換底求解.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點(diǎn),P是CD上的點(diǎn).
          (1)求直線PE與平面ABC所成角的正切值的最大值;
          (2)求證:直線PE∥平面A1BF;
          (3)求直線PE與平面A1BF的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
          (1)求證:A′B⊥面AB′C;
          (2)求二面角B-B′C-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)F在線段AA1上,當(dāng)AF=
          a或2a
          a或2a
          時(shí),CF⊥平面B1DF.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點(diǎn).
          (Ⅰ)求證:B1C1⊥平面ABB1A1;
          (Ⅱ)設(shè)E是CC1的中點(diǎn),試求出A1E與平面A1BD所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D為AC的中點(diǎn).
          (1)求證:B1C∥平面A1BD;
          (2)求證:B1C1⊥平面ABB1A1;
          (3)在CC1上是否存在一點(diǎn)E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案