日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D為AC的中點.
          (1)求證:B1C∥平面A1BD;
          (2)求證:B1C1⊥平面ABB1A1;
          (3)在CC1上是否存在一點E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由.
          分析:(1)利用三角形的中位線定理、平行四邊形的性質(zhì)、線面平行的判定定理即可得出;
          (2)利用直棱柱的性質(zhì)、正方形的性質(zhì)、線面垂直的判定和性質(zhì)定理即可證明;
          (3)利用面面垂直的判定定理即可證明.
          解答:證明:(1)連接AB1與A1B相較于點M,連接MD,則點M為AB1的中點.
          又D為AC的中點,由三角形的中位線定理可得:MD∥B1C.
          又∵B1C?平面A1BD,MD?平面A1BD,
          ∴B1C∥平面A1BD;
          (2)∵AB=B1B,及直三棱柱ABC-A1B1C1中,
          ∴四邊形ABB1A1為正方形,BB1⊥B1C1
          ∴A1B⊥AB1
          又AC1⊥平面A1BD,∴AC1⊥A1B,
          又AB1∩AC1=A.
          ∴A1B⊥平面AB1C1,∴A1B⊥B1C1
          ∵A1B∩BB1=B,∴B1C1⊥平面ABB1A1
          (3)設AB=a,CE=x,∵B1C1⊥A1B1,在Rt△A1B1C1中,有A1C1=
          2
          a
          ,同理A1B1=
          2
          a
          ,∴C1E=a-x.
          A1E=
          2a2+(a-x)2
          =
          x2-2ax+3a2
          ,BE=
          a2+x2
          ,
          ∴在△A1BE中,由余弦定理得BE2=A1B2+A1E2-2A1B•A1Ecos45°,
          即a2+x2=2a2+x2+3a2-2ax-2
          2
          a
          3a2+x2-2ax
          ×
          2
          2

          3a2+x2-2ax
          =2a-x

          x=
          1
          2
          a
          ,即E是C1C的中點.
          ∵D、E分別為AC、C1C的中點,∴DE∥AC1
          ∵AC1⊥平面A1BD,∴DE⊥平面A1BD.
          又DE?平面BDE,∴平面A1BD⊥平面BDE.
          點評:熟練掌握三角形的中位線定理、平行四邊形的性質(zhì)、線面平行的判定定理、直棱柱的性質(zhì)、正方形的性質(zhì)、線面與面面垂直的判定和性質(zhì)定理是解題的關鍵.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點,P是CD上的點.
          (1)求直線PE與平面ABC所成角的正切值的最大值;
          (2)求證:直線PE∥平面A1BF;
          (3)求直線PE與平面A1BF的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
          (1)求證:A′B⊥面AB′C;
          (2)求二面角B-B′C-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點,點F在線段AA1上,當AF=
          a或2a
          a或2a
          時,CF⊥平面B1DF.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點.
          (Ⅰ)求證:B1C1⊥平面ABB1A1
          (Ⅱ)設E是CC1的中點,試求出A1E與平面A1BD所成角的正弦值.

          查看答案和解析>>

          同步練習冊答案