某自來(lái)水廠的蓄水池存有400噸水,水廠每小時(shí)可向蓄水池中注水60噸,同時(shí)蓄水池又向居民小區(qū)不間斷供水,小時(shí)內(nèi)供水總量為
噸(
),從供水開(kāi)始到第幾小時(shí)時(shí),蓄水池中的存水量最少?最少水量是多少噸?
從供水開(kāi)始到第6小時(shí)時(shí),蓄水池水量最少,只有40噸
解析試題分析:蓄水池中的水量等于原有水量加上注水量再減去向小區(qū)的供水量,得到關(guān)于的一元二次方程,為計(jì)算方便可用換元法令
,即將方程轉(zhuǎn)化為熟悉的關(guān)于x的一元二次方程,可利用配方法求值域。
試題解析:設(shè)小時(shí)后蓄水池中的水量為
噸,
則(
)
令=
,即
,且
即
∴當(dāng),即
時(shí),
,
答:從供水開(kāi)始到第6小時(shí)時(shí),蓄水池水量最少,只有40噸
考點(diǎn):實(shí)際應(yīng)用題,二次函數(shù)配方法求最值
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向總公司交a元(3≤a≤5)的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為x元(9≤x≤11)時(shí),一年的銷售量為(12-x)2萬(wàn)件.
(1)求分公司一年的利潤(rùn)L(萬(wàn)元)與每件產(chǎn)品的售價(jià)x的函數(shù)關(guān)系式;
(2)當(dāng)每件產(chǎn)品的售價(jià)為多少元時(shí),分公司一年的利潤(rùn)L最大?并求出L的最大值Q(a).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)滿足
,當(dāng)
時(shí)
;當(dāng)
時(shí)
.
(Ⅰ)求函數(shù)在(-1,1)上的單調(diào)區(qū)間;
(Ⅱ)若,求函數(shù)
在
上的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
“地溝油”嚴(yán)重危害了人民群眾的身體健康,某企業(yè)在政府部門(mén)的支持下,進(jìn)行技術(shù)攻關(guān),新上了一種從“食品殘?jiān)敝刑釤挸錾锊裼偷捻?xiàng)目,經(jīng)測(cè)算,該項(xiàng)目月處理成本y(元)與月處理量x(噸)之間的函數(shù)關(guān)系可以近似的表示為:
且每處理一噸“食品殘?jiān),可得到能利用的生物柴油價(jià)值為200元,若該項(xiàng)目不獲利,政府將補(bǔ)貼.
(1)當(dāng)x∈[200,300]時(shí),判斷該項(xiàng)目能否獲利?如果獲利,求出最大利潤(rùn);如果不獲利,則政府每月至少需要補(bǔ)貼多少元才能使該項(xiàng)目不虧損;
(2)該項(xiàng)目每月處理量為多少噸時(shí),才能使每噸的平均處理成本最低?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)(
).
(1)若的定義域和值域均是
,求實(shí)數(shù)
的值;
(2)若對(duì)任意的,
,總有
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于函數(shù),若存在實(shí)數(shù)對(duì)(
),使得等式
對(duì)定義域中的每一個(gè)
都成立,則稱函數(shù)
是“(
)型函數(shù)”.
(1) 判斷函數(shù)是否為“(
)型函數(shù)”,并說(shuō)明理由;
(2) 若函數(shù)是“(
)型函數(shù)”,求出滿足條件的一組實(shí)數(shù)對(duì)
;
(3)已知函數(shù)是“(
)型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì)
為(1,4).當(dāng)
時(shí),
,若當(dāng)
時(shí),都有
,試求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線
平行,且
在
處取得極小值
.設(shè)
.
(1)若曲線上的點(diǎn)
到點(diǎn)
的距離的最小值為
,求
的值;
(2)如何取值時(shí),函數(shù)
存在零點(diǎn),并求出零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)對(duì)任意a,b
都有
當(dāng)
時(shí),
.
(1)求證:在R上是增函數(shù). (2)若
,解不等式
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com