日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設函數(shù)f(x)=x2+aln(x+1),a∈R.
          (Ⅰ)討論函數(shù)f(x)的單調性;
          (Ⅱ)若函數(shù)f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x2)≥( ﹣1)x2

          【答案】解:(Ⅰ)函數(shù)f(x)的定義域為(﹣1,+∞), f′(x)=2x+ = ,
          令g(x)=2x2+2x+a,則△=4﹣8a,
          ①當a≥ 時,△≤0,g(x)≥0,從而f′(x)≥0,
          故函數(shù)f(x)在(﹣1,+∞)上單調遞增;
          ②當a< 時,△>0,g(x)=0的兩個根為
          x1= ,x2= ,
          當a≤0時,x1≤﹣1<x2 , 此時,當x∈(﹣1, ),函數(shù)f(x)單調遞減;
          當x∈( ,+∞),函數(shù)f(x)單調遞增.
          當0<a< 時,﹣1<x1<x2 , 此時函數(shù)f(x)在區(qū)間(﹣1, ),( ,+∞)單調遞增;
          當x∈( , )函數(shù)f(x)單調遞減.
          綜上:當a≥ 時,函數(shù)f(x)在(﹣1,+∞)上單調遞增;
          當0<a< 時,函數(shù)f(x)在區(qū)間(﹣1, ),( ,+∞)單調遞增;
          在區(qū)間( , ),函數(shù)f(x)單調遞減;
          當a≤0時,x∈(﹣1, )函數(shù)f(x)單調遞減,
          x∈( ,+∞)函數(shù)f(x)單調遞增…(6分)
          (Ⅱ)證明:當函數(shù)f(x)有兩個極值點時,0<a< ,x2= ∈(﹣ ,0),
          且g(x2)=2 +2x2+a=0,即a=﹣2 ﹣2x2 ,
          f(x2)= +(﹣2 ﹣2x2)ln(x2+1),x2∈(﹣ ,0),
          =x2﹣2(x2+1)ln(x2+1),x2∈(﹣ ,0),
          令h(x)=x﹣2(x+1)ln(x+1),x∈(﹣ ,0),
          h′(x)=﹣2ln(x+1)﹣1,令h′(x)>0,x∈(﹣ , ﹣1),函數(shù)單調遞增;
          令h′(x)<0,x∈( ﹣1,0),函數(shù)單調遞減;
          ∴h(x)max=h( ﹣1)= ﹣1,∴ ﹣1,
          ∵x2∈(﹣ ,0),
          ∴f(x2)≥( ﹣1)x2
          【解析】(Ⅰ)求出函數(shù)的導數(shù),通過討論a的范圍,求出函數(shù)的單調區(qū)間即可;(Ⅱ)得到a=﹣2 ﹣2x2 , 根據(jù)f(x2)= +(﹣2 ﹣2x2)ln(x2+1),x2∈(﹣ ,0),得到 =x2﹣2(x2+1)ln(x2+1),x2∈(﹣ ,0),令h(x)=x﹣2(x+1)ln(x+1),x∈(﹣ ,0),根據(jù)函數(shù)的單調性求出h(x)的最大值,從而證明結論.
          【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調性和函數(shù)的極值與導數(shù)的相關知識點,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減;求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值才能正確解答此題.

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知定義在R上的函數(shù)f(x)=x2+|x﹣m|(m為實數(shù))是偶函數(shù),記a=f(log e),b=f(log3π),c=f(em)(e為自然對數(shù)的底數(shù)),則a,b,c的大小關系(
          A.a<b<c
          B.a<c<b
          C.c<a<b
          D.c<b<a

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在平面直角坐標系中,動圓經過點M(0,t﹣2),N(0,t+2),P(﹣2,0).其中t∈R.
          (1)求動圓圓心E的軌跡方程;
          (2)過點P作直線l交軌跡E于不同的兩點A,B,直線OA與直線OB分別交直線x=2于兩點C,D,記△ACD與△BCD的面積分別為S1 , S2 . 求S1+S2的最小值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】對于函數(shù),如果存在實數(shù)使得,那么稱的線性函數(shù).

          1)下面給出兩組函數(shù),判斷是否分別為的線性函數(shù)?并說明理由;

          第一組:

          第二組:

          2)設,線性函數(shù)為.若等式上有解,求實數(shù)的取值范圍;

          3)設,取.線性函數(shù)圖像的最低點為.若對于任意正實數(shù).試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,a,b,c成等比數(shù)列,且a2﹣c2=ac﹣bc.
          (Ⅰ)求∠A的大;
          (Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】給出下列命題:
          ①存在實數(shù)α使
          ②直線 是函數(shù)y=sinx圖象的一條對稱軸.
          ③y=cos(cosx)(x∈R)的值域是[cos1,1].
          ④若α,β都是第一象限角,且α>β,則tanα>tanβ.
          其中正確命題的題號為( )
          A.①②
          B.②③
          C.③④
          D.①④

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且8sin2
          (1)求角A的大;
          (2)若a= ,b+c=3,求b和c的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
          (1)若曲線y=f(x)在點(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
          (2)設f(x)有兩個極值點x1 , x2 , 且x1<x2 , 求證:f(x1)+f(x2)>﹣5.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某縣共有戶籍人口60萬人,該縣60歲以上、百歲以下的人口占比13.8%,百歲及以上的老人15人.現(xiàn)從該縣60歲及以上、百歲以下的老人中隨機抽取230人,得到如下頻數(shù)分布表:

          年齡段(歲)

          [60,70)

          [70,80)

          [80,90)

          [90,99)

          人數(shù)(人)

          125

          75

          25

          5


          (1)從樣本中70歲及以上老人中采用分層抽樣的方法抽取21人進一步了解他們的生活狀況,則80歲及以上老人應抽多少人?
          (2)從(1)中所抽取的80歲及以上的老人中,再隨機抽取2人,求抽到90歲及以上老人的概率;
          (3)該縣按省委辦公廳、省人民政府辦公廳《關于加強新時期老年人優(yōu)待服務工作的意見》精神,制定如下老年人生活補貼措施,由省、市、縣三級財政分級撥款. ①本縣戶籍60歲及以上居民,按城鄉(xiāng)居民養(yǎng)老保險實施辦法每月領取55元基本養(yǎng)老金;
          ②本縣戶籍80歲及以上老年人額外享受高齡老人生活補貼.
          (a)百歲及以上老年人,每人每月發(fā)放345元生活補貼;
          (b)90歲及以上、百歲以下老年人,每人每月發(fā)放200元的生活補貼;
          (c)80歲及以上、90歲以下老年人,每人每月發(fā)放100元的生活補貼.
          試估計政府執(zhí)行此項補貼措施的年度預算.

          查看答案和解析>>

          同步練習冊答案