日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知f(x)=2x(x∈R)可以表示為一個奇函數(shù)g(x)與一個偶函數(shù)h(x)之和,若不等式a-g(x)+h(2x)≥0對于x∈[1,2]恒成立,則實數(shù)a的取值范圍是   
          【答案】分析:由題意可得g(x)+h(x)=2x,根據(jù)函數(shù)奇偶性,推出方程g(-x)+h(-x)=-g(x)+h(x)=2-x從而可得h(x)和g(x)的解析式,再代入不等式a-g(x)+h(2x)≥0,利用常數(shù)分離法進(jìn)行求解
          解答:解:解:f(x)=2x可以表示成一個奇函數(shù)g(x)與一個偶函數(shù)h(x)之和
          ∴g(x)+h(x)=2x①,g(-x)+h(-x)=-g(x)+h(x)=2-x
          ①②聯(lián)立可得,h(x)=(2x+2-x),g(x)=(2x-2-x),
          ag(x)+h(2x)≥0對于x∈[1,2]恒成立
          對于x∈[1,2]恒成立
          a≥-=-(2x-2-x)+(2-x-2x)對于x∈[1,2]恒成立
          t=2x-2-x,x∈[1,2],t∈[,]則t+在t∈[,],
          t=,時,則t+=
          ∴a≥-
          故答案為a≥-;
          點評:本題主要考查了奇偶函數(shù)的定義的應(yīng)用,函數(shù)的恒成立的問題,常會轉(zhuǎn)化為求函數(shù)的最值問題,體現(xiàn)了轉(zhuǎn)化思想的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          定義函數(shù)y=f(x),x∈D,若存在常數(shù)C,對任意的x1∈D,存在唯一的x2∈D,使得
          f(x1)f(x2)
          =C
          ,則稱函數(shù)f(x)在D上的幾何平均數(shù)為C.已知f(x)=2x,x∈[1,2],則函數(shù)f(x)=2x在[1,2]上的幾何平均數(shù)為( 。
          A、
          2
          B、2
          C、2
          2
          D、4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=2x可以表示成一個奇函數(shù)g(x)與一個偶函數(shù)h(x)之和,若關(guān)于x的不等式ag(x)+h(2x)≥0對于x∈[1,2]恒成立,則實數(shù)a的最小值是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•大連一模)選修4-5:不等式選講
          已知f(x)=|2x-1|+ax-5(a是常數(shù),a∈R)
          (Ⅰ)當(dāng)a=1時求不等式f(x)≥0的解集.
          (Ⅱ)如果函數(shù)y=f(x)恰有兩個不同的零點,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知f(x)=2x+3,g(x)=4x-5,則使得f(h(x))=g(x)成立的h(x)=( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•普陀區(qū)一模)已知f(x)=2x+x,則f-1(6)=
          2
          2

          查看答案和解析>>

          同步練習(xí)冊答案