日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)數(shù)組,,,數(shù)稱為數(shù)組的元素.對于數(shù)組,規(guī)定:

          ①數(shù)組中所有元素的和為

          ②變換,將數(shù)組變換成數(shù)組,其中表示不超過的最大整數(shù);

          ③若數(shù)組,則當(dāng)且僅當(dāng)時,

          如果對數(shù)組中任意個元素,存在一種分法,可將其分為兩組,每組個元素,使得兩組所有元素的和相等,則稱數(shù)組具有性質(zhì)

          (Ⅰ)已知數(shù)組,,計算,并寫出數(shù)組是否具有性質(zhì)

          (Ⅱ)已知數(shù)組具有性質(zhì),證明:也具有性質(zhì)

          (Ⅲ)證明:數(shù)組具有性質(zhì)的充要條件是

          【答案】(Ⅰ)數(shù)組是具有性質(zhì),數(shù)組不具有性質(zhì).(Ⅱ)證明見解析(Ⅲ)證明見解析

          【解析】

          (Ⅰ)根據(jù)題意,即可容易得,則可判斷;

          (Ⅱ)對都為奇數(shù)和都為偶數(shù),結(jié)合性質(zhì)的定義,即可證明;

          (Ⅲ)從充分性和必要性上,結(jié)合(Ⅱ)中所求,即可證明.

          (Ⅰ),;

          數(shù)組是具有性質(zhì),數(shù)組不具有性質(zhì)

          (Ⅱ)證明:當(dāng)元素均為奇數(shù)時,

          因為,,所以

          中任意個元素,不妨設(shè)為

          因為數(shù)組具有性質(zhì),所以對于

          存在一種分法:將其分為兩組,每組個素,使得各組內(nèi)所有元素之和相等.

          如果用替換上述分法中的),

          就可以得到對于的一種分法:

          將其分為兩組,每組個元素,顯然各組內(nèi)所有元素之和相等.

          所以此時也具有性質(zhì)

          當(dāng)元素均為偶數(shù)時,

          因為,,所以

          中任意個元素,不妨設(shè)為

          因為數(shù)組具有性質(zhì),所以對于,

          存在一種分法:將其分為兩組,每組個元素,使得各組內(nèi)所有元素之和相等.

          如果用替換上述分法中的),

          就可以得到對于的一種分法:

          將其分為兩組,每組個元素,顯然各組內(nèi)所有元素之和相等.

          所以此時也具有性質(zhì)

          綜上所述,由數(shù)組具有性質(zhì)可得也具有性質(zhì)

          (Ⅲ)證明:(1)充分性:顯然成立.

          2)必要性:

          因為數(shù)組具有性質(zhì),所以對于數(shù)組中任意個元素,存在一種分法:

          個元素平均分成2組,并且各組內(nèi)所有元素之和等于同一個正整數(shù),

          所以均為偶數(shù),從而元素的奇偶性相同.

          由(Ⅱ)可知,如果數(shù)組具有性質(zhì),

          那么仍具有性質(zhì)

          又因為,當(dāng)為奇數(shù)時,

          ,當(dāng)且僅當(dāng)時等號成立,

          當(dāng)為偶數(shù)時,

          ,

          由此得到的充要條件是

          易知,

          當(dāng)且僅當(dāng)時等號成立.

          ,當(dāng)且僅當(dāng)時等號成立.

          ,,

          假設(shè)對于任意的,有,則,

          ,,得,即

          ,

          ,

          所以,且單調(diào)遞減.

          又因為,矛盾.

          所以存在,有

          又由結(jié)論1,得此時

          上述過程倒推回去,

          因為數(shù)組均具有性質(zhì),即數(shù)組中元素

          的奇偶性相同,可得數(shù)組中的所有元素都相同,

          所以,數(shù)組中的元素均相同,即

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,以為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

          1)求的直角坐標(biāo)方程;

          2)若的交于點,交于、兩點,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年安慶市在大力推進(jìn)城市環(huán)境、人文精神建設(shè)的過程中,居民生活垃圾分類逐漸形成意識.有關(guān)部門為宣傳垃圾分類知識,面向該市市民進(jìn)行了一次垃圾分類知識"的網(wǎng)絡(luò)問卷調(diào)查,每位市民僅有一次參與機(jī)會,通過抽樣,得到參與問卷調(diào)查中的1000人的得分?jǐn)?shù)據(jù),其頻率分布直方圖如圖:

          1)由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分Z服從正態(tài)分布,近似為這1000人得分的平均值(同一組數(shù)據(jù)用該區(qū)間的中點值作代表),利用該正態(tài)分布,求P);

          2)在(1)的條件下,有關(guān)部門為此次參加問卷調(diào)查的市民制定如下獎勵方案:

          i)得分不低于可獲贈2次隨機(jī)話費(fèi),得分低于則只有1次:

          ii)每次贈送的隨機(jī)話費(fèi)和對應(yīng)概率如下:

          贈送話費(fèi)(單位:元)

          10

          20

          概率

          現(xiàn)有一位市民要參加此次問卷調(diào)查,記X(單位:元)為該市民參加問卷調(diào)查獲贈的話費(fèi),求X的分布列.附:,若,則.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點是拋物線的頂點,,上的兩個動點,且.

          1)判斷點是否在直線上?說明理由;

          2)設(shè)點是△的外接圓的圓心,求點的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】密云某商場舉辦春節(jié)優(yōu)惠酬賓贈券活動,購買百元以上單件商品可以使用優(yōu)惠劵一張,并且每天購物只能用一張優(yōu)惠券.一名顧客得到三張優(yōu)惠券,三張優(yōu)惠券的具體優(yōu)惠方式如下:

          優(yōu)惠券1:若標(biāo)價超過50元,則付款時減免標(biāo)價的10%

          優(yōu)惠券2:若標(biāo)價超過100元,則付款時減免20元;

          優(yōu)惠券3:若標(biāo)價超過100元,則超過100元的部分減免18%

          如果顧客需要先用掉優(yōu)惠券1,并且使用優(yōu)惠券1比使用優(yōu)惠券2、優(yōu)惠券3減免的都多,那么你建議他購買的商品的標(biāo)價可以是__________元.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過點斜率為正的直線交橢圓,兩點.,是橢圓上相異的兩點,滿足分別平分,.外接圓半徑的最小值為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】秉承“綠水青山就是金山銀山”的發(fā)展理念,某市環(huán)保部門通過制定評分標(biāo)準(zhǔn),先對本市的企業(yè)進(jìn)行評估,評出四個等級,并根據(jù)等級給予相應(yīng)的獎懲,如下表所示:

          評估得分

          評定等級

          不合格

          合格

          良好

          優(yōu)秀

          獎勵(萬元)

          環(huán)保部門對企業(yè)評估完成后,隨機(jī)抽取了家企業(yè)的評估得分(分)為樣本,得到如下頻率分布表:

          評估得分

          頻率

          其中表示模糊不清的兩個數(shù)字,但知道樣本評估得分的平均數(shù)是.

          1)現(xiàn)從樣本外的數(shù)百個企業(yè)評估得分中隨機(jī)抽取個,若以樣本中頻率為概率,求該家企業(yè)的獎勵不少于萬元的概率;

          2)現(xiàn)從樣本“不合格”、“合格”、“良好”三個等級中,按分層抽樣的方法抽取家企業(yè),再從這家企業(yè)隨機(jī)抽取家,求這兩家企業(yè)所獲獎勵之和不少于萬元的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】2019年末,武漢出現(xiàn)新型冠狀病毒肺炎()疫情,并快速席卷我國其他地區(qū),傳播速度很快.因這種病毒是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,所以目前沒有特異治療方法,防控難度很大.武漢市出現(xiàn)疫情最早,感染人員最多,防控壓力最大,武漢市從27日起舉全市之力入戶上門排查確診的新冠肺炎患者、疑似的新冠肺炎患者、無法明確排除新冠肺炎的發(fā)熱患者和與確診患者的密切接觸者等“四類”人員,強(qiáng)化網(wǎng)格化管理,不落一戶、不漏一人.在排查期間,一戶6口之家被確認(rèn)為“與確診患者的密切接觸者”,這種情況下醫(yī)護(hù)人員要對其家庭成員隨機(jī)地逐一進(jìn)行“核糖核酸”檢測,若出現(xiàn)陽性,則該家庭為“感染高危戶”.設(shè)該家庭每個成員檢測呈陽性的概率均為)且相互獨(dú)立,該家庭至少檢測了5個人才能確定為“感染高危戶”的概率為,當(dāng)時,最大,則

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某健身房為了解運(yùn)動健身減肥的效果,調(diào)查了名肥胖者健身前(如直方圖(1)所示)后(如直方圖(2)所示)的體重(單位:)變化情況:

          對比數(shù)據(jù),關(guān)于這名肥胖者,下面結(jié)論正確的是( )

          A.他們健身后,體重在區(qū)間內(nèi)的人數(shù)較健身前增加了

          B.他們健身后,體重原在區(qū)間內(nèi)的人員一定無變化

          C.他們健身后,人的平均體重大約減少了

          D.他們健身后,原來體重在區(qū)間內(nèi)的肥胖者體重都有減少

          查看答案和解析>>

          同步練習(xí)冊答案