日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)a,b∈R,若x≥0時(shí)恒有0≤x4﹣x3+ax+b≤x2﹣12,則ab等于 _________ 

          【答案】﹣1

          【解析】

          驗(yàn)證發(fā)現(xiàn),

          當(dāng)x=1時(shí),將1代入不等式有0≤a+b≤0,所以a+b=0,

          當(dāng)x=0時(shí),可得0≤b≤1,結(jié)合a+b=0可得﹣1≤a≤0

          fx=x4﹣x3+ax+b,即f1=a+b=0

          f′x=4x3﹣3x2+a,f′′x=12x2﹣6x,

          f′′x)>0,可得x,則f′x=4x3﹣3x2+a[0,]上減,在[,+∞)上增

          ﹣1≤a≤0,所以f′0=a0,f′1=1+a≥0

          x≥0時(shí)恒有0≤x4﹣x3+ax+b,結(jié)合f1=a+b=0知,1必為函數(shù)fx=x4﹣x3+ax+b的極小值點(diǎn),也是最小值點(diǎn)

          故有f′1=1+a=0,由此得a=﹣1b=1

          ab=﹣1

          故答案為﹣1

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若函數(shù)f(x)在定義域內(nèi)是增函數(shù),求實(shí)數(shù)a的取值范圍;

          2)當(dāng)a[1,e)時(shí),求方程的根的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱柱中,底面ABCD是等腰梯形,,,,頂點(diǎn)在底面ABCD內(nèi)的射影恰為點(diǎn)C.

          1)求證:BC⊥平面ACD1

          2)若直線DD1與底面ABCD所成的角為,求平面與平面ABCD所成銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種大型醫(yī)療檢查機(jī)器生產(chǎn)商,對(duì)一次性購買2臺(tái)機(jī)器的客戶,推出兩種超過質(zhì)保期后兩年內(nèi)的延保維修優(yōu)惠方案:方案一:交納延保金7000元,在延保的兩年內(nèi)可免費(fèi)維修2次,超過2次每次收取維修費(fèi)2000元;方案二:交納延保金10000元,在延保的兩年內(nèi)可免費(fèi)維修4次,超過4次每次收取維修費(fèi)1000元.某醫(yī)院準(zhǔn)備一次性購買2臺(tái)這種機(jī)器。現(xiàn)需決策在購買機(jī)器時(shí)應(yīng)購買哪種延保方案,為此搜集并整理了50臺(tái)這種機(jī)器超過質(zhì)保期后延保兩年內(nèi)維修的次數(shù),得下表:

          維修次數(shù)

          0

          1

          2

          3

          臺(tái)數(shù)

          5

          10

          20

          15

          以這50臺(tái)機(jī)器維修次數(shù)的頻率代替1臺(tái)機(jī)器維修次數(shù)發(fā)生的概率,記X表示這2臺(tái)機(jī)器超過質(zhì)保期后延保的兩年內(nèi)共需維修的次數(shù)。

          (1)求X的分布列;

          (2)以所需延保金及維修費(fèi)用的期望值為決策依據(jù),醫(yī)院選擇哪種延保方案更合算?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的左、右焦點(diǎn)分別為F1,F2,過點(diǎn)F1的直線與C交于AB兩點(diǎn).ABF2的周長為,且橢圓的離心率為.

          1)求橢圓C的標(biāo)準(zhǔn)方程:

          2)設(shè)點(diǎn)P為橢圓C的下頂點(diǎn),直線PA,PBy2分別交于點(diǎn)MN,當(dāng)|MN|最小時(shí),求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,

          (1)求 的值;

          (2)試猜想的表達(dá)式(用一個(gè)組合數(shù)表示),并證明你的猜想.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,等腰梯形ABCD中,,,,OBE中點(diǎn),FBC中點(diǎn).將沿BE折起到的位置,如圖2.

          1)證明:平面;

          2)若平面平面BCDE,求點(diǎn)F到平面的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

          在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (Ⅰ)若,求直線的普通方程及曲線的直角坐標(biāo)方程;

          (Ⅱ)若直線與曲線有兩個(gè)不同的交點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,點(diǎn)是直線上的動(dòng)點(diǎn),為定點(diǎn),點(diǎn)的中點(diǎn),動(dòng)點(diǎn)滿足,且,設(shè)點(diǎn)的軌跡為曲線.

          1)求曲線的方程;

          2)過點(diǎn)的直線交曲線兩點(diǎn),為曲線上異于的任意一點(diǎn),直線,分別交直線兩點(diǎn).是否為定值?若是,求的值;若不是,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案