日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)fx)=

          1)求fx)>0的解集;

          2)若xR時,恒成立,求實(shí)數(shù)m的取值范圍.

          【答案】(1)(0,+∞)(2)[+∞

          【解析】

          1)通過對fx)求導(dǎo),可得xR時,fx≥0,所以fx)在(﹣,+∞)上單調(diào)遞增,又f0)=0,x∈(0+∞)時fx)>0,不等式得解;

          2)若xR時,恒成立,不等式轉(zhuǎn)化為2eexxR),因?yàn)槎际桥己瘮?shù),所以只需x[0+∞)時,2ee2x1≥0成立即可,構(gòu)造新的函數(shù)Fx)=2ee2x1,求導(dǎo)后再對導(dǎo)函數(shù)進(jìn)行分類討論,可得實(shí)數(shù)m的取值范圍.

          1)因?yàn)?/span>fx)=,則fx)=;

          所以xR時,fx≥0,

          所以fx)在(﹣,+∞)上單調(diào)遞增,又f0)=0,

          所以x∈(﹣,0)時,fx)<0,

          x∈(0,+∞)時fx)>0,

          fx)>0的解集為(0,+∞.

          2)因?yàn)?/span>xR時,2ee2x+1恒成立,

          等價于恒成立,

          2eexxR),

          因?yàn)槎际桥己瘮?shù),

          所以只需x[0,+∞)時,2ee2x1≥0成立即可,

          Fx)=2ee2x1F0)=0,

          Fx)=22mx+1e2e2x2e2x[2mx+1e1],F0)=0,

          Gx)=(2mx+1e1,G0)=0,

          Gx)=2me2mx+1)(2mx1e4m2x2+2m1e

          ①當(dāng)2m1≥0,即m時,Gx≥0,所以Gx)在[0+∞)上單調(diào)遞增,

          又因?yàn)?/span>G0)=0,所以x[0,+∞)時,Gx≥0,即Fx≥0,

          所以Fx)在[0+∞)上單調(diào)遞增,又因?yàn)?/span>F0)=0,所以x[0+∞)時,Fx≥0,所以m時滿足要求;

          ②當(dāng)m0,x1時,2ee2+1,不成立,所以m≠0;

          ③當(dāng)2m10m≠0時,即mm≠0時,x上單調(diào)遞減,

          又因?yàn)?/span>G0)=0,所以x時,Gx)<0,即Fx)<0

          所以Fx)在上單調(diào)遞減,

          又因?yàn)?/span>F0)=0,所以x時,Fx)<0

          所以mm≠0時不滿足要求.

          綜上所述,實(shí)數(shù)m的取值范圍是[,+∞.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】

          給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓準(zhǔn)圓”.若橢圓C的一個焦點(diǎn)為,其短軸上的一個端點(diǎn)到F的距離為.

          I)求橢圓的方程和其準(zhǔn)圓方程;

          (II )點(diǎn)P是橢圓C準(zhǔn)圓上的一個動點(diǎn),過點(diǎn)P作直線,使得與橢圓C都只有一個交點(diǎn),且分別交其準(zhǔn)圓于點(diǎn)M,N.

          1)當(dāng)P準(zhǔn)圓軸正半軸的交點(diǎn)時,求的方程;

          2)求證:|MN|為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)、是關(guān)于的方程的兩個不相等的實(shí)數(shù)根,那么過兩點(diǎn)、的直線與圓的位置關(guān)系是(

          A.相離B.相切C.相交D.的變化而變化

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=lnxa,fx)是fx)的導(dǎo)函數(shù),若關(guān)于x的方程fx0有兩個不等的根,則實(shí)數(shù)a的取值范圍是_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),則直線y=x+1與曲線的交點(diǎn)個數(shù)為_____;若關(guān)于x的方程有三個不等實(shí)根,則實(shí)數(shù)a的取值范圍是_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱錐DABC,O為線段AC上一點(diǎn),平面ADC⊥平面ABC,且△ADO,ABO為等腰直角三角形,斜邊AO=4.

          ()求證:ACBD;

          ()將△BDODO旋轉(zhuǎn)一周,求所得旋轉(zhuǎn)體的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓,軸被曲線截得的線段長等于C1的長半軸長.

          1)求實(shí)數(shù)b的值;

          2)設(shè)C2軸的交點(diǎn)為M,過坐標(biāo)原點(diǎn)O的直線C2相交于點(diǎn)A、B,直線MAMB分別與C1交于點(diǎn)DE.

          證明:

          △MAB,△MDE的面積分別是,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于雙曲線(),若點(diǎn)滿足,則稱的外部;若點(diǎn)滿足,則稱的內(nèi)部.

          (1)證明:直線上的點(diǎn)都在的外部.

          (2)若點(diǎn)的坐標(biāo)為,點(diǎn)的內(nèi)部或上,求的最小值.

          (3)過點(diǎn),圓()內(nèi)部及上的點(diǎn)構(gòu)成的圓弧長等于該圓周長的一半,求滿足的關(guān)系式及的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案