(2)y=kx2-x+1在[0,+∞)上單調(diào)遞減,求實(shí)數(shù)k的取值范圍.
思路分析:(1)二次函數(shù)的單調(diào)區(qū)間依賴于其對稱軸的位置,處理二次函數(shù)的單調(diào)性問題需對對稱軸進(jìn)行討論.(2)y=kx2-x+1中的k是否為零要注意討論.
解:(1)f(x)=x2+2(a-1)x+2,其對稱軸為x==1-a,若要二次函數(shù)在(-∞,4]上單調(diào)遞減,必須滿足1-a≥4,即a≤-3.如圖所示.
(2)k=0時(shí),y=-x+1滿足題意;k>0時(shí),拋物線開口向上,在[0,+∞)上不可能單調(diào)遞減;k<0時(shí),對稱軸x=
<0在[0,+∞)上單調(diào)遞減.
綜上,k≤0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年赤峰二中模擬理)設(shè)函數(shù)f(x) = lnx - ax + 1.
(Ⅰ) 若函數(shù)f(x)為單調(diào)函數(shù), 求實(shí)數(shù)a 的取值范圍;
(Ⅱ) 當(dāng)a > 0時(shí), 恒有f(x) £ 0, 求a的取值范圍;
(Ⅲ) 證明: ( n Î N, n ³ 2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(文)已知函數(shù)f(x)=-x3+ax2+bx+c圖像上的點(diǎn)P(1,-2)處的切線方程為y=-3x+1.
(1)若函數(shù)f(x)在x=-2時(shí)有極值,求f(x)的表達(dá)式;
(2)函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江蘇省高三10月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x2-mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),求函數(shù)f(x)在[1,e]上的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省黃岡市高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
本小題滿分12分)設(shè)M是由滿足下列條件的函數(shù)f (x)構(gòu)成的集合:①方程f (x)一x=0有實(shí)根;②函數(shù)的導(dǎo)數(shù)滿足0<
<1.
(1)若函數(shù)f(x)為集合M中的任意一個(gè)元素,證明:方程f(x)一x=0只有一個(gè)實(shí)根;
(2)判斷函數(shù)是否是集合M中的元素,并說明理由;
(3)設(shè)函數(shù)f(x)為集合M中的任意一個(gè)元素,對于定義域中任意,
證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山西省介休市高三下學(xué)期模擬考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
已知函數(shù)f(x)=x3+
ax2+ax-2(a∈R),
(1)若函數(shù)f(x)在區(qū)間(-∞,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)A(x1,f(x1))、B(x2,f(x2))是函數(shù)f(x)的兩個(gè)極值點(diǎn),若直線AB的斜率不小于-,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com