【題目】設(shè)為
的內(nèi)心,三邊長
,點(diǎn)
在邊
上,且
,若直線
交直線
于點(diǎn)
,則線段
的長為______.
【答案】
【解析】
設(shè)內(nèi)切圓⊙I與三角形三邊分別相切于點(diǎn)O,D,E.IO⊥AB,建立直角坐標(biāo)系.分別設(shè)AO=x,BO=y,CD=z.利用切線的性質(zhì)定理可得x,y,z.利用余弦定理可得cosB=,sinB,tanB,可得直線BC的方程.設(shè)內(nèi)切圓的半徑為r.則
=
,解得r,得I坐標(biāo),可得直線PI的方程,聯(lián)立直線BC和PI解得Q.即可得|CQ|=6﹣|BQ|.
如圖所示,設(shè)內(nèi)切圓⊙I與三角形三邊分別相切于點(diǎn)O,D,E,IO⊥AB,建立直角坐標(biāo)系.
分別設(shè)AO=x,BO=y,CD=z,則,解得x=3,y=4,z=2.O(0,0),B(4,0),P(﹣1,0),
在中,cosB=
=
,sinB=
,可得tanB=
.
直線BC的方程為:y=(x﹣4).
設(shè)內(nèi)切圓的半徑為r.則=
,解得r=
.可得I
.
直線PI的方程為:y=x+
,即y=
x+
.
聯(lián)立,解得Q
,
∴|CQ|=6﹣|BQ|=6﹣=6﹣
=
.
故答案為:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設(shè)從進(jìn)口開始到出口
,每遇到一個(gè)岔路口,每位游客選擇其中一條道路行進(jìn)是等可能的.現(xiàn)有甲、乙、丙、丁共
名游客結(jié)伴到旅游景區(qū)游玩,他們從進(jìn)口
的岔路口就開始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口
集中,設(shè)點(diǎn)
是其中的一個(gè)交叉路口點(diǎn).
(1)求甲經(jīng)過點(diǎn)的概率;
(2)設(shè)這名游客中恰有
名游客都是經(jīng)過點(diǎn)
,求隨機(jī)變量
的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若方程
(
為常數(shù))有兩個(gè)不相等的根,則實(shí)數(shù)
的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率是
,過點(diǎn)
的動(dòng)直線
與橢圓相交于
兩點(diǎn),當(dāng)直線
與
軸平行時(shí),直線
被橢圓
截得的線段長為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)在軸上是否存在異于點(diǎn)
的定點(diǎn)
,使得直線
變化時(shí),總有
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形中,
,
,
,
,
,
分別在
,
上,
,現(xiàn)將四邊形
沿
折起,使平面
平面
.
(Ⅰ)若,在折疊后的線段
上是否存在一點(diǎn)
,且
,使得
平面
?若存在,求出
的值;若不存在,說明理由;
(Ⅱ)當(dāng)三棱錐的體積最大時(shí),求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)與點(diǎn)
在直線
的兩側(cè),給出以下結(jié)論:①
;②當(dāng)
時(shí),
有最小值,無最大值;③
;④當(dāng)
且
時(shí),
的取值范圍是
,正確的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.以上都不對
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來得到一系列圖形,如圖1,線段的長度為a,在線段
上取兩個(gè)點(diǎn)
,
,使得
,以
為一邊在線段
的上方做一個(gè)正六邊形,然后去掉線段
,得到圖2中的圖形;對圖2中的最上方的線段
作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長的和為
,現(xiàn)給出有關(guān)數(shù)列
的四個(gè)命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對任意的正整數(shù)
,都有
;
④存在最大的正數(shù),使得對任意的正整數(shù)
,都有
.
其中真命題的序號是________________(請寫出所有真命題的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄AP恒過定點(diǎn),且與直線
相切.
(Ⅰ)求動(dòng)圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點(diǎn)C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)前,以“立德樹人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對初三畢業(yè)學(xué)生進(jìn)行體育測試,是激發(fā)學(xué)生、家長和學(xué)校積極開展體育活動(dòng),保證學(xué)生健康成長的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開始時(shí)要掌握全年級學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測試,得到下邊頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個(gè)數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級所有學(xué)生的跳繩個(gè)數(shù)服從正態(tài)分布
,用樣本數(shù)據(jù)的平均值和方差估計(jì)總體的期望和方差,已知樣本方差
(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級學(xué)生經(jīng)過一年的訓(xùn)練,正式測試時(shí)每人每分鐘跳繩個(gè)數(shù)都有明顯進(jìn)步,假設(shè)今年正式測試時(shí)每人每分鐘跳繩個(gè)數(shù)比初三上學(xué)期開始時(shí)個(gè)數(shù)增加10個(gè),現(xiàn)利用所得正態(tài)分布模型:
預(yù)計(jì)全年級恰有2000名學(xué)生,正式測試每分鐘跳182個(gè)以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級所有學(xué)生中任意選取3人,記正式測試時(shí)每分鐘跳195以上的人數(shù)為ξ,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量服從正態(tài)分布
,則
,
,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com