【題目】東方商店欲購(gòu)進(jìn)某種食品(保質(zhì)期兩天),此商店每?jī)商熨?gòu)進(jìn)該食品一次(購(gòu)進(jìn)時(shí),該食品為剛生產(chǎn)的).根據(jù)市場(chǎng)調(diào)查,該食品每份進(jìn)價(jià)元,售價(jià)
元,如果兩天內(nèi)無(wú)法售出,則食品過(guò)期作廢,且兩天內(nèi)的銷(xiāo)售情況互不影響,為了了解市場(chǎng)的需求情況,現(xiàn)統(tǒng)計(jì)該產(chǎn)品在本地區(qū)
天的銷(xiāo)售量如下表:
(視樣本頻率為概率)
(1)根據(jù)該產(chǎn)品天的銷(xiāo)售量統(tǒng)計(jì)表,記兩天中一共銷(xiāo)售該食品份數(shù)為
,求
的分布列與期望
(2)以兩天內(nèi)該產(chǎn)品所獲得的利潤(rùn)期望為決策依據(jù),東方商店一次性購(gòu)進(jìn)或
份,哪一種得到的利潤(rùn)更大?
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】
(1)根據(jù)題意可得的取值為
,計(jì)算相應(yīng)的概率值即可確定分布列和數(shù)學(xué)期望;
(2)分別求解當(dāng)購(gòu)進(jìn)份時(shí)的利潤(rùn)和購(gòu)進(jìn)
份時(shí)的利潤(rùn)即可確定利潤(rùn)更高的決策.
(1)根據(jù)題意可得
,
,
,
,
,
,
,
的分布列如下:
(2)當(dāng)購(gòu)進(jìn)份時(shí),利潤(rùn)為
,
當(dāng)購(gòu)進(jìn)份時(shí),利潤(rùn)為
,
可見(jiàn),當(dāng)購(gòu)進(jìn)
份時(shí),利潤(rùn)更高.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:
,過(guò)橢圓右焦點(diǎn)的最短弦長(zhǎng)是
,且點(diǎn)
在橢圓上.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動(dòng)點(diǎn)滿足:
,其中
,
是橢圓上的點(diǎn),直線
與直線
的斜率之積為
,求點(diǎn)
的軌跡方程并判斷是否存在兩個(gè)定點(diǎn)
、
,使得
為定值?若存在,求出定值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某射手射擊1次,擊中目標(biāo)的概率是0.9,他連續(xù)射擊4次,且各次射擊是否擊中目標(biāo)相互之間沒(méi)有影響,有下列結(jié)論:
①他第3次擊中目標(biāo)的概率是0.9;
②他恰好擊中目標(biāo)3次的概率是;
③他至少擊中目標(biāo)1次的概率是;
④他至多擊中目標(biāo)1次的概率是
其中正確結(jié)論的序號(hào)是( )
A.①②③B.①③
C.①④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為的正方體
中,
為
的中點(diǎn),
為
上任意一點(diǎn),
,
為
上兩動(dòng)點(diǎn),且
的長(zhǎng)為定值,則下面四個(gè)值中不是定值的是( )
A.點(diǎn)到平面
的距離B.直線
與平面
所成的角
C.三棱錐的體積D.二面角
的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在空間四邊形ABCD的邊AB,BC,CD,DA上分別取點(diǎn)E,F(xiàn),G,H,如果EH,F(xiàn)G相交于一點(diǎn)M,那么M一定在直線________上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)向量,
,其中
,則下列判斷錯(cuò)誤的是( )
A.向量與
軸正方向的夾角為定值(與
、
之值無(wú)關(guān))
B.的最大值為
C.與
夾角的最大值為
D.的最大值為l
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右頂點(diǎn)分別為
,
,上下頂點(diǎn)分別為
,
,左、右焦點(diǎn)分別為
,
,離心率為e.
(1)若,設(shè)四邊形
的面積為
,四邊形
的面積為
,且
,求橢圓C的方程;
(2)若,設(shè)直線
與橢圓C相交于P,Q兩點(diǎn),
分別為線段
,
的中點(diǎn),坐標(biāo)原點(diǎn)O在以MN為直徑的圓上,且
,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線在點(diǎn)
處的切線方程是
,求函數(shù)
在
上的值域;
(2)當(dāng)時(shí),記函數(shù)
,若函數(shù)
有三個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)命題中真命題是
A. 同垂直于一直線的兩條直線互相平行
B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱
C. 過(guò)空間任一點(diǎn)與兩條異面直線都垂直的直線有且只有一條
D. 過(guò)球面上任意兩點(diǎn)的大圓有且只有一個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com