日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 可求得Cn0+2Cn1+3Cn2+4Cn3+…+(n+1)Cnn=(  )
          分析:利用組合數(shù)階乘形式的公式得到kCnk=nCn-1k-1;將原式變成(Cn0+Cn1+Cn2+Cn3+…+Cnn)+n(Cn-10+Cn-11+Cn-12+Cn-13++Cn-1n-1),再利用二項(xiàng)式系數(shù)的和即可求解
          解答:解:∵kCnk=nCn-1k-1
          ∴原式=(Cn0+Cn1+Cn2+Cn3+…+Cnn)+n(Cn-10+Cn-11+Cn-12+Cn-13++Cn-1n-1
          =2n+n2n-1
          =(n+2)•2n-1
          故選D
          點(diǎn)評(píng):本題考查組合數(shù)的公式性質(zhì):kCkn=nCk-1n-1;考查二項(xiàng)式系數(shù)和公式,屬于基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          14、(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈N*)(1+x)n=C,上式兩邊對(duì)x求導(dǎo)后令x=1,可得結(jié)論:Cn1+2Cn2+…+rCnr+nCnn=n•2n-1,利用上述解題思路,可得到許多結(jié)論.試問(wèn):Cn0+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn=
          (n+2)2n-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題

          可求得Cn0+2Cn1+3Cn2+4Cn3+…+(n+1)Cnn=


          1. A.
            (n+1)•2n
          2. B.
            (n+1)•2n-1
          3. C.
            (n+2)•2n
          4. D.
            (n+2)•2n-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

          (1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈N*)(1+x)n=C,上式兩邊對(duì)x求導(dǎo)后令x=1,可得結(jié)論:Cn1+2Cn2+…+rCnr+nCnn=n•2n-1,利用上述解題思路,可得到許多結(jié)論.試問(wèn):Cn0+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn=________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          (1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈N*)(1+x)n=C,上式兩邊對(duì)x求導(dǎo)后令x=1,可得結(jié)論:Cn1+2Cn2+…+rCnr+nCnn=n•2n-1,利用上述解題思路,可得到許多結(jié)論.試問(wèn):Cn0+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn=______.

          查看答案和解析>>