日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,棱柱ABCD—A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC=60°,平面AA1C1C⊥平面ABCD,∠A1AC=60°。

             (Ⅰ)證明:BD⊥AA1

             (Ⅱ)求二面角D—A1A—C的平面角的余弦值;

             (Ⅲ)在直線CC1上是否存在點(diǎn)P,使BP//平面DA1C1?若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由。

          (Ⅰ)見(jiàn)解析

                 (Ⅱ)

                 (Ⅲ)見(jiàn)解析


          解析:

          連接BD交AC于O,則BD⊥AC,

          連接A1O

          在△AA1O中,AA1=2,AO=1,

          ∠A1AO=60°

          ∴A1O2=AA12+AO2-2AA1·Aocos60°=3

          ∴AO2+A1O2=A12

          ∴A1O⊥AO,由于平面AA1C1C⊥

          平面ABCD,

          所以A1O⊥底面ABCD

          ∴以O(shè)B、OC、OA1所在直線為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,則A(0,-1,0),B(,0,0),C(0,1,0),D(-,0,0),A1(0,0,

           
          ……………………2分

          (Ⅰ)由于

          ∴BD⊥AA1……………………4分

            (Ⅱ)由于OB⊥平面AA1C1C

          ∴平面AA1C1C的法向量

          設(shè)⊥平面AA1D

          得到……………………6分

          所以二面角D—A1A—C的平面角的余弦值是……………………8分

          (Ⅲ)假設(shè)在直線CC1上存在點(diǎn)P,使BP//平面DA1C1

          設(shè)

          ……………………9分

          設(shè)

          設(shè)

          得到……………………10分

          又因?yàn)?img width=37 height=24 src="http://thumb.zyjl.cn/pic1/1899/sx/24/372224.gif">平面DA1C1

          ·

          即點(diǎn)P在C1C的延長(zhǎng)線上且使C1C=CP……………………12分

          法二:在A1作A1O⊥AC于點(diǎn)O,由于平面AA1C??1C⊥平面

          ABCD,由面面垂直的性質(zhì)定理知,A1O⊥平面ABCD,

          又底面為菱形,所以AC⊥BD

           

          ……………………4分

          (Ⅱ)在△AA1O中,A1A=2,∠A1AO=60°

          ∴AO=AA1·cos60°=1

          所以O(shè)是AC的中點(diǎn),由于底面ABCD為菱形,所以

          O也是BD中點(diǎn)

          由(Ⅰ)可知DO⊥平面AA1C

          過(guò)O作OE⊥AA1于E點(diǎn),連接OE,則AA1⊥DE

          則∠DEO為二面角D—AA1—C的平面角

          ……………………6分

          在菱形ABCD中,AB=2,∠ABC=60°

          ∴AC=AB=BC=2

          ∴AO=1,DO=

          在Rt△AEO中,OE=OA·sin∠EAO=

          DE=

          ∴cos∠DEO=

          ∴二面角D—A1A—C的平面角的余弦值是……………………8分

          (Ⅲ)存在這樣的點(diǎn)P

          連接B1C,因?yàn)锳1B1ABDC

          ∴四邊形A1B1CD為平行四邊形。

          ∴A1D//B1C

          在C1C的延長(zhǎng)線上取點(diǎn)P,使C1C=CP,連接BP……………………10分

          因B??1??BCC1,……………………12分

          ∴BB1CP

          ∴四邊形BB1CP為平行四邊形

          則BP//B1C

          ∴BP//A1D

          ∴BP//平面DA1C1

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,棱柱ABCD-A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC和∠A1B1C1均為60°,平面AA1C1C⊥平面ABCD.
          (I)求證:BD⊥AA1
          (II)求二面角D-AA1-C的余弦值;
          (III)在直線CC1上是否存在點(diǎn)P,使BP∥平面DA1C1,若存在,求出點(diǎn)P的位置,若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖四棱柱ABCD-A1B1C1D1的底面ABCD為正方形,側(cè)棱與底邊長(zhǎng)均為a,且∠A1AD=∠A1AB=60°.
          ①求證四棱錐A1-ABCD為正四棱錐;
          ②求側(cè)面A1ABB1與截面B1BDD1的銳二面角大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          17、如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,AC∩BD=O,側(cè)棱AA1⊥BD,點(diǎn)F為DC1的中點(diǎn).
          (I) 證明:OF∥平面BCC1B1
          (II)證明:平面DBC1⊥平面ACC1A1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,棱柱ABCD-A1B1C1D1的底面ABCD為菱形,平面AA1C1C⊥平面ABCD.?
          (1)證明:BD⊥AA1;?
          (2)證明:平面AB1C∥平面DA1C1
          (3)在直線CC1上是否存在點(diǎn)P,使BP∥平面DA1C1?若存在,求出點(diǎn)P的位置;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,棱柱ABCD-A1B1C1D1的所有棱長(zhǎng)都等于2,∠ABC=60°,平面AA1CC1⊥平面ABCD,∠A1AC=60°
          (1)求二面角D-A1A-C的大小.
          (2)求點(diǎn)B1到平面A1ADD1的距離
          (3)在直線CC1上是否存在P點(diǎn),使BP∥平面DA1C1,若存在,求出點(diǎn)P的位置;若不存在,說(shuō)出理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案