日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C的中心在原點(diǎn),離心率等于 ,它的一個(gè)短軸端點(diǎn)恰好是拋物線x2=8 y的焦點(diǎn).
          (1)求橢圓C的方程;
          (2)已知P(2,m)、Q(2,﹣m)(m>0)是橢圓上的兩點(diǎn),A,B是橢圓上位于直線PQ兩側(cè)的動(dòng)點(diǎn),
          ①若直線AB的斜率為 ,求四邊形APBQ面積的最大值;
          ②當(dāng)A、B運(yùn)動(dòng)時(shí),滿足∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請(qǐng)說明理由.

          【答案】
          (1)解:設(shè)C方程為 ,則 ,

          ,a2=b2+c2,得a=4,

          ∴橢圓C的方程為


          (2)解:①設(shè)A(x1,y1),B(x2,y2),直線AB的方程為 ,

          代入 ,得x2+tx+t2﹣12=0,

          由△>0,解得﹣4<t<4,

          由韋達(dá)定理得x1+x2=﹣t,

          ,

          由此可得:四邊形APBQ的面積

          ∴當(dāng)t=0,

          ②當(dāng)∠APQ=∠BPQ,則PA、PB的斜率之和為0,設(shè)直線PA的斜率為k,則PB的斜率為﹣k,直線PA的直線方程為y﹣3=k(x﹣2),

          整理得(3+4k2)x2+8(3﹣2k)kx+4(3﹣2k)2﹣48=0,

          同理直線PB的直線方程為y﹣3=﹣k(x﹣2),

          可得

          , ,

          所以直線AB的斜率為定值


          【解析】(1)設(shè)C方程為 ,則 ,由 ,a2=b2+c2 , 解出即可得出.(2)①設(shè)A(x1 , y1),B(x2 , y2),直線AB的方程為 ,代入 ,得x2+tx+t2﹣12=0,
          由△>0,解得t范圍,利用根與系數(shù)的關(guān)系可得|x1﹣x2|,由此可得:四邊形APBQ的面積S.
          ②當(dāng)∠APQ=∠BPQ,則PA、PB的斜率之和為0,設(shè)直線PA的斜率為k,則PB的斜率為﹣k,直線PA的直線方程為y﹣3=k(x﹣2),代入橢圓方程可得(3+4k2)x2+8(3﹣2k)kx+4(3﹣2k)2﹣48=0,同理直線PB的直線方程為y﹣3=﹣k(x﹣2),利用根與系數(shù)的關(guān)系、斜率計(jì)算公式即可得出.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)= 是奇函數(shù).
          (1)求實(shí)數(shù)m的值;
          (2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上的最小值為﹣1,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),在以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρ=
          (1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
          (2)若直線l與曲線C相交于A,B兩點(diǎn),求△AOB的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知關(guān)于的不等式).

          (1)若不等式的解集為,求 的值;

          (2)求不等式)的解集.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】要制作一個(gè)如圖的框架(單位:米).要求所圍成的總面積為19.5(),其中是一個(gè)矩形, 是一個(gè)等腰梯形,梯形高, ,設(shè)米, 米.

          (1)求關(guān)于的表達(dá)式;

          (2)如何設(shè)計(jì), 的長(zhǎng)度,才能使所用材料最少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在數(shù)列{an}中,a1=1,Sn+1=4an+2,則a2013的值為(
          A.3019×22012
          B.3019×22013
          C.3018×22012
          D.無(wú)法確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項(xiàng)am , an使得 =4a1 , 則 + 的最小值為(
          A.
          B.
          C.
          D.不存在

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)數(shù)列{an}的首項(xiàng)a1為常數(shù),且an+1=3n﹣2an , (n∈N*
          (1)證明:{an }是等比數(shù)列;
          (2)若a1= ,{an}中是否存在連續(xù)三項(xiàng)成等差數(shù)列?若存在,寫出這三項(xiàng),若不存在說明理由.
          (3)若{an}是遞增數(shù)列,求a1的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=﹣ sinx cosx+1 (Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
          (Ⅱ)若x∈[0, ],且f(x)= ,求cosx的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案