日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,邊長為2的正方形ABCD所在平面與三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
          (1)求證:AB∥平面CDE;
          (2)求證:DE⊥平面ABE;
          (3)求點A到平面BDE的距離.

          【答案】
          (1)證明:∵正方形ABCD中,AB∥CD,

          AB平面CDE,CD平面CDE,

          ∴AB∥平面CDE


          (2)證明:∵AE⊥平面CDE,CD平面CDE,DE平面CDE,

          ∴AE⊥CD,DE⊥AE,

          在正方形ABCD中,CD⊥AD,

          ∵AD∩AE=A,∴CD⊥平面ADE.

          ∵DE平面ADE,∴CD⊥DE,

          ∵AB∥CD,∴DE⊥AB,

          ∵AB∩AE=E,∴DE⊥平面ABE


          (3)解:∵AB⊥AD,AB⊥DE,AD∩DE=D,

          ∴AB⊥平面ADE,

          ∴三棱錐B﹣ADE的體積VBADE= = = ,

          = =

          設(shè)點A到平面BDE的距離為d,

          ∵VABDE=VBADE,∴ = ,解得d= ,

          ∴點A到平面BDE的距離為


          【解析】(1)推導(dǎo)出AB∥CD,由此能證明AB∥平面CDE.(2)推導(dǎo)出AE⊥CD,DE⊥AE,從而CD⊥DE,再由DE⊥AB,能證明DE⊥平面ABE.(3)由AB⊥平面ADE,能求出三棱錐B﹣ADE的體積.再由VABDE=VBADE,能求出點A到平面BDE的距離.
          【考點精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識,掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行,以及對直線與平面垂直的判定的理解,了解一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=ax3﹣3x+1(x∈R),若對于任意的x∈[﹣1,1]都有f(x)≥0成立,則實數(shù)a的值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a∈R,函數(shù)f(x)═log2 +a).
          (1)若f(1)<2,求實數(shù)a的取值范圍;
          (2)設(shè)函數(shù)g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],討論函數(shù)g(x)的零點個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)數(shù)列{an}滿足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求證:
          (1)數(shù)列{an+2n}是等比數(shù)列;
          (2)求數(shù)列{an}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】等比數(shù)列{an}共有奇數(shù)項,所有奇數(shù)項和S=255,所有偶數(shù)項和S=﹣126,末項是192,則首項a1=(
          A.1
          B.2
          C.3
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)求函數(shù)f(x)的單調(diào)增區(qū)間;
          (2)若直線y=a與函數(shù)f(x)的圖象無公共點,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)的定義域為R,如果存在函數(shù)g(x),使得f(x)≥g(x)對于一切實數(shù)x都成立,那么稱g(x)為函數(shù)f(x)的一個承托函數(shù).已知函數(shù)f(x)=ax2+bx+c的圖象經(jīng)過點(﹣1,0).
          (1)若a=1,b=2.寫出函數(shù)f(x)的一個承托函數(shù)(結(jié)論不要求證明);
          (2)判斷是否存在常數(shù)a,b,c,使得y=x為函數(shù)f(x)的一個承托函數(shù),且f(x)為函數(shù) 的一個承托函數(shù)?若存在,求出a,b,c的值;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在正方體ABCD﹣A1B1C1D1中,E是棱CC1的中點,F(xiàn)是側(cè)面BCC1B1內(nèi)的動點,且A1F∥平面D1AE,則A1F與平面BCC1B1所成角的正切值t構(gòu)成的集合是(
          A.{t| }
          B.{t| ≤t≤2}
          C.{t|2 }
          D.{t|2 }

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓C: + =1(a>b>0)的右焦點為F,右頂點、上頂點分別為點A、B,且|AB|= |BF|.
          (Ⅰ)求橢圓C的離心率;
          (Ⅱ)若斜率為2的直線l過點(0,2),且l交橢圓C于P、Q兩點,OP⊥OQ.求直線l的方程及橢圓C的方程.

          查看答案和解析>>

          同步練習(xí)冊答案