日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•嘉定區(qū)二模)如圖,已知點(diǎn)F(0,1),直線m:y=-1,P為平面上的動點(diǎn),過點(diǎn)P作m的垂線,垂足為點(diǎn)Q,且
          QP
          QF
          =
          FP
          FQ

          (1)求動點(diǎn)P的軌跡C的方程;
          (2)(理)過軌跡C的準(zhǔn)線與y軸的交點(diǎn)M作直線m′與軌跡C交于不同兩點(diǎn)A、B,且線段AB的垂直平分線與y軸的交點(diǎn)為D(0,y0),求y0的取值范圍;
          (3)(理)對于(2)中的點(diǎn)A、B,在y軸上是否存在一點(diǎn)D,使得△ABD為等邊三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
          分析:(1)設(shè)P(x,y),由題意得Q(x,-1),即可得到
          QP
          ,
          QF
          ,
          FP
          ,
          FQ
          ,利用向量的數(shù)量積運(yùn)算即可得出動點(diǎn)P的軌跡C的方程;
          (2)利用(1)的軌跡方程即可得到準(zhǔn)線方程及點(diǎn)M的坐標(biāo),設(shè)直線m'的方程為y=kx-1(k≠0),與拋物線方程聯(lián)立得到根與系數(shù)的關(guān)系,利用中點(diǎn)坐標(biāo)和垂直平分線的性質(zhì)即可得到線段AB的垂直平分線的方程即可;
          (3)利用(2)的結(jié)論,點(diǎn)到直線的距離公式及等邊三角形的判定即可得出.
          解答:解:(1)設(shè)P(x,y),由題意,Q(x,-1),
          QP
          =(0 , y+1)
          ,
          QF
          =(-x , 2)
          ,
          FP
          =(x , y-1)
          ,
          FQ
          =(x , -2)

          QP
          QF
          =
          FP
          FQ
          ,得2(y+1)=x2-2(y-1),
          化簡得x2=4y.所以,動點(diǎn)P的軌跡C的方程為x2=4y.
          (2)軌跡C為拋物線,準(zhǔn)線方程為y=-1,
          即直線m,∴M(0,-1),
          設(shè)直線m'的方程為y=kx-1(k≠0),由
          y=kx-1
          x2=4y
           得x2-4kx+4=0,
          由△=16k2-16>0,得k2>1.
          設(shè)A(x1,y1),B(x2,y2),則x1+x2=4k,
          所以線段AB的中點(diǎn)為(2k,2k2-1),
          所以線段AB垂直平分線的方程為(x-2k)+k[y-(2k2-1)]=0,
          令x=0,得y0=2k2+1
          因?yàn)閗2>1,所以y0∈(3,+∞).
          (3)由(2),x1+x2=4k,x1x2=4,
          |AB|=
          (x1-x2)2+(y1-y2)2
          =
          (1+k2)(x1-x2)2
          =
          (1+k2)[(x1+x2)2-4x1x2]

          =
          (1+k2)(16k2-16)
          =4
          (k2+1)(k2-1)

          假設(shè)存在點(diǎn)D(0,y0),使得△ABD為等邊三角形,
          則D到直線AB的距離d=
          3
          2
          |AB|

          因?yàn)镈(0,2k2+1),所以d=
          |y0+1|
          1+k2
          =
          2(k2+1)
          k2+1
          =2
          k2+1

          所以2
          k2+1
          =2
          3
          k2+1
          k2-1
          ,解得k2=
          4
          3

          所以,存在點(diǎn)D(0 , 
          11
          3
          )
          ,使得△ABD為等邊三角形.
          點(diǎn)評:本題主要考查拋物線的方程與性質(zhì)、向量的數(shù)量積、準(zhǔn)線與拋物線相交問題轉(zhuǎn)化為方程聯(lián)立得到根與系數(shù)的關(guān)系、弦長公式、等邊三角形的定義、點(diǎn)到直線的距離公式、線段的垂直平分線及對稱等基礎(chǔ)知識,考查運(yùn)算能力、推理論證以及分析問題、解決問題的能力.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•嘉定區(qū)二模)函數(shù)f(x)=ax-(k-1)a-x(a>0且≠1)是定義域?yàn)镽的奇函數(shù).
          (1)求k值;
          (2)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式f(x2+tx)+f(4-x)<0恒成立的t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•嘉定區(qū)二模)設(shè)定義域?yàn)镽的函數(shù)f(x)=
          1
          |x-1|
          ,x≠1
          1,x=1
          ,若關(guān)于x的方程f2(x)+bf(x)+c=0有3個(gè)不同的整數(shù)解x1,x2,x3,則x12+x22+x32等于
          5
          5

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•嘉定區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+
          x2+b
          )
          在區(qū)間(-∞,+∞)上既是奇函數(shù)又是增函數(shù),則函數(shù)g(x)=loga|x|-b|的圖象是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•嘉定區(qū)二模)若關(guān)于x的不等式2x2-3x+a<0的解集為(m,1),且實(shí)數(shù)f(1)<0,則m=
          1
          2
          1
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•嘉定區(qū)二模)(文)已知集合A={-1,0,a},B={x|1<3x<9,x∈Z},若A∩B≠∅,則實(shí)數(shù)a的值是
          1
          1

          查看答案和解析>>

          同步練習(xí)冊答案