日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知f(x)= (ax﹣ax)(a>0且a≠1).
          (1)判斷f(x)的奇偶性.
          (2)討論f(x)的單調(diào)性.
          (3)當x∈[﹣1,1]時,f(x)≥b恒成立,求b的取值范圍.

          【答案】
          (1)解:∵f(x)= ,

          所以f(x)定義域為R,

          又f(﹣x)= (ax﹣ax)=﹣ (ax﹣ax)=﹣f(x),

          所以函數(shù)f(x)為奇函數(shù)


          (2)解:任取x1<x2

          則f(x2)﹣f(x1)= (ax2﹣ax1)(1+a﹣(x1+x2

          ∵x1<x2,且a>0且a≠1,1+a﹣(x1+x2>0

          ①當a>1時,a2﹣1>0,ax2﹣ax1>0,則有f(x2)﹣f(x1)>0,

          ②當0<a<1時,a2﹣1<0.,ax2﹣ax1<0,則有f(x2)﹣f(x1)>0,

          所以f(x)為增函數(shù)


          (3)解:當x∈[﹣1,1]時,f(x)≥b恒成立,

          即b小于等于f(x)的最小值,

          由(2)知當x=﹣1時,f(x)取得最小值,最小值為 )=﹣1,

          ∴b≤﹣1.

          求b的取值范圍(﹣∞,﹣1]


          【解析】(1)由函數(shù)的解析式可求函數(shù)的定義域,先證奇偶性:代入可得f(﹣x)=﹣f(x),從而可得函數(shù)為奇函數(shù);(2)再證單調(diào)性:利用定義任取x1<x2 , 利用作差比較f(x1)﹣f(x2)的正負,從而確當f(x1)與f(x2)的大小,進而判斷函數(shù)的單調(diào)性;(3)對一切x∈[﹣1,1]恒成立,轉(zhuǎn)化為b小于等于f(x)的最小值,利用(2)的結(jié)論求其最小值,從而建立不等關(guān)系解之即可.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ax2+2x﹣2﹣a(a≤0),
          (1)若a=﹣1,求函數(shù)的零點;
          (2)若函數(shù)在區(qū)間(0,1]上恰有一個零點,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= +log2x.
          (1)求f(2),f( ),f(4),f( )的值,并計算f(2)+f( ),f(4)+f( );
          (2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)的定義域為[3,6],則函數(shù)y= 的定義域為(
          A.[ ,+∞)
          B.[ ,2)
          C.( ,+∞)
          D.[ ,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(本小題滿分12分)

          某學(xué)校用簡單隨機抽樣方法抽取了100名同學(xué),對其日均課外閱讀時間(單位:分鐘)進行調(diào)查,結(jié)果如下:

          t

          男同學(xué)人數(shù)

          7

          11

          15

          12

          2

          1

          女同學(xué)人數(shù)

          8

          9

          17

          13

          3

          2

          若將日均課外閱讀時間不低于60分鐘的學(xué)生稱為“讀書迷”.

          (1)將頻率視為概率,估計該校4000名學(xué)生中“讀書迷”有多少人?

          (2)從已抽取的8名“讀書迷”中隨機抽取4位同學(xué)參加讀書日宣傳活動.

          (i)求抽取的4位同學(xué)中既有男同學(xué)又有女同學(xué)的概率;

          (ii)記抽取的“讀書迷”中男生人數(shù)為,求的分布列和數(shù)學(xué)期望

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)點軸上的一個定點,其橫坐標為),已知當時,動圓過點且與直線相切,記動圓的圓心的軌跡為

          (Ⅰ)求曲線的方程;

          (Ⅱ)當時,若直線與曲線相切于點),且與以定點為圓心的動圓也相切,當動圓的面積最小時,證明: 、兩點的橫坐標之差為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3. (Ⅰ)當a=﹣2時,求不等式f(x)<g(x)的解集;
          (Ⅱ)設(shè)a>﹣1,且當 時,f(x)≤g(x),求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)對任意實數(shù)恒有,且當時, ,又.

          (1)判斷的奇偶性;

          (2)求證: 是R上的減函數(shù);

          (3)求在區(qū)間[-3,3]上的值域;

          (4)若xR,不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;
          (2)設(shè)a>0,求函數(shù)f(x)在[2a,4a]上的最小值;
          (3)某同學(xué)發(fā)現(xiàn):總存在正實數(shù)a、b(a<b),使ab=ba , 試問:他的判斷是否正確?若不正確,請說明理由;若正確,請直接寫出a的取值范圍(不需要解答過程).

          查看答案和解析>>

          同步練習冊答案