日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .函數(shù)y=(2x+1)3x=0處的導(dǎo)數(shù)是
          A.0B.1
          C.3D.6
          D
          本題考查常見函數(shù)的導(dǎo)數(shù)及其運(yùn)算法則.應(yīng)先將其轉(zhuǎn)化成f(x)=a0xna1xn1+…+an1xan的形式,再求導(dǎo).也可用復(fù)合函數(shù)求導(dǎo)法則.
          解法一:∵y=(2x+1)3=(2x)3+3·(2x)2+3·(2x)+1=8x3+12x2+6x+1,
          y′=24x2+24x+6.∴y′|x=0=6.
          解法二:∵y=(2x+1)3,∴y′=3(2x+1)2·(2x+1)=6(2x+1)2.
          y′|x=0=6.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)m是實(shí)數(shù),記M={m|m>1},f(x)=log3(x2-4mx+4m2+m+) 
          (1)證明: 當(dāng)mM時(shí),f(x)對(duì)所有實(shí)數(shù)都有意義;反之,若f(x)對(duì)所有實(shí)數(shù)x都有意義,則mM。 
          (2)當(dāng)mM時(shí),求函數(shù)f(x)的最小值。
          (3)求證: 對(duì)每個(gè)mM,函數(shù)f(x)的最小值都不小于1。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          某質(zhì)點(diǎn)的運(yùn)動(dòng)方程是s=t3-(2t-1)2,則在t="1" s時(shí)的瞬時(shí)速度為___________.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)="3" 700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)="460x+5" 000(單位:萬元),又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).
          (1)求利潤(rùn)函數(shù)P(x)及邊際利潤(rùn)函數(shù)MP(x);(提示:利潤(rùn)=產(chǎn)值-成本)
          (2)問年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?
          (3)求邊際利潤(rùn)函數(shù)MP(x)的單調(diào)遞減區(qū)間,并說明單調(diào)遞減在本題中的實(shí)際意義是什么?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          若曲線y=x2-1與y=1-x3x=x0處的切線互相垂直,則x0等于
          A.B.-
          C.D.或0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          .已知f(x)=x3ax2+(a+6)x+1有極大值和極小值,則a的范圍為
          A.-1<a<2B.-3<a<6
          C.a<-1或a>2D.a<-3或a>6

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          設(shè)某物體一天中的溫度T是時(shí)間t的函數(shù),已知,其中溫度的單位是℃,時(shí)間的單位是小時(shí).中午12:00相應(yīng)的t=0,中午12:00以后相應(yīng)的t取正數(shù),中午12:00以前相應(yīng)的t取負(fù)數(shù)(如早上8:00相應(yīng)的t=-4,下午16:00相應(yīng)的t=4).若測(cè)得該物體在早上8:00的溫度為8℃,中午12:00的溫度為60℃,下午13:00的溫度為58℃,且已知該物體的溫度早上8:00與下午16:00有相同的變化率.
          (1)求該物體的溫度T關(guān)于時(shí)間t的函數(shù)關(guān)系式;
          (2)該物體在上午10:00到下午14:00這段時(shí)間中(包括端點(diǎn))何時(shí)溫度最高?最高溫度是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          定義在(-∞,4]上的減函數(shù)f(x)滿足f(m-sinx)≤f(+cos2x)對(duì)任意x∈R都成立,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          求函數(shù)處的導(dǎo)數(shù)。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案