日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•東城區(qū)模擬)已知直線l過定點(-1,1),則“直線l的斜率為0”是“直線l與圓x2+y2=1相切”的( 。
          分析:對充分性和必要性分別加以論證:當直線l過定點(-1,1)且斜率為0時,方程為y=1,易得原點到直線l的距離等于圓的半徑,充分性成立;當直線l與圓x2+y2=1相切時,因為經(jīng)過點(-1,1),所以直線l的方程為:x=-1或y=1,即斜率為0或斜率不存在,所以必要性不成立.由此可得正確答案.
          解答:解:先看充分性
          當直線l過定點(-1,1),且l的斜率為0時,直線l方程為y=1,
          此時圓x2+y2=1的圓心(0,0)到直線l的距離為d=1,恰好等于圓的半徑
          所以直線l與圓x2+y2=1相切,所以充分性成立;
          再看必要性
          ∵直線l過定點(-1,1),且與圓x2+y2=1相切
          ∴圓心(0,0)到直線l的距離為d=1,
          可得直線l的方程為:x=-1或y=1,即斜率為0或斜率不存在,
          所以必要性不成立.
          綜上所述,得“直線l的斜率為0”是“直線l與圓x2+y2=1相切”的充分不必要條件
          故選A
          點評:本題以坐標系中的直線與圓的位置關(guān)系為載體,考查了充分條件、必要條件的判斷與應(yīng)用,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)一模)已知sin(45°-α)=
          2
          10
          ,且0°<α<90°,則cosα=(  )

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)二模)定義:F(x,y)=yx(x>0,y>0),已知數(shù)列{an}滿足:An=
          F(n,2)
          F(2,n)
          (n∈N+),若對任意正整數(shù)n,都有an≥ak(k∈N*成立,則ak的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)二模)已知函數(shù)f(x)=-
          12
          x2+2x-aex

          (Ⅰ)若a=1,求f(x)在x=1處的切線方程;
          (Ⅱ)若f(x)在R上是增函數(shù),求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)一模)已知x,y,z∈R,若-1,x,y,z,-3成等比數(shù)列,則xyz的值為( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•東城區(qū)二模)已知函數(shù)f(x)=x
          1
          2
          ,給出下列命題:
          ①若x>1,則f(x)>1;
          ②若0<x1<x2,則f(x2)-f(x1)>x2-x1;
          ③若0<x1<x2,則x2f(x1)<x1f(x2);
          ④若0<x1<x2,則
          f(x1)+f(x2)
          2
          <f(
          x1+x2
          2
          )

          其中,所有正確命題的序號是
          ①④
          ①④

          查看答案和解析>>

          同步練習(xí)冊答案