日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a>0且a≠1,f(x)是奇函數(shù),φ(x)=(a-1)f(x)(
          1
          ax-1
          +
          1
          2

          (1)判斷?(x)的奇偶性,并給出證明;
          (2)證明:若xf(x)>0,則?(x)>0.
          分析:(1)先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱,再看?(x)與?(-x)的關(guān)系即可得結(jié)論;
          (2)先判斷出x>0時(shí)對(duì)應(yīng)f(x)的正負(fù),再對(duì)a分大于1和大于0小于1兩種情況討論,分別得出
          1
          ax-1
          +
          1
          2
          的正負(fù),綜合即可證明x>0時(shí),?(x)>0;
          再利用偶函數(shù)的性質(zhì)?(x)=?(-x)即可證明x<0時(shí),?(x)>0.
          解答:解:(1)∵f(x)為奇函數(shù)∴f(-x)=-f(x)
          又?(x)的定義域?yàn)閧x∈R|x≠0}2分)
          ?(-x)=(a-1)f(-x)(
          1
          a-x-1
          +
          1
          2
          )
          =(a-1)f(-x)(
          ax
          1-ax
          +
          1
          2
          )

          =(a-1)f(-x)(
          1
          1-ax
          -
          1
          2
          )=(a-1)f(x)(
          1
          ax-1
          +
          1
          2
          )=?(x)

          ∴?(x)是偶函數(shù).(6分)
          (2)若x>0,則由已知,f(x)>0,(7分)
          ①當(dāng)a>1時(shí)
          1
          ax-1
          +
          1
          2
          >0
          ,a-1>0∴?(x)>0
          ②當(dāng)0<a<1時(shí)
          1
          ax-1
          +
          1
          2
          <0
          ,a-1<0,∴?(x)>0,(10分)
          又?(x)是偶函數(shù),
          ∴x<0,?(x)=?(-x)>0.(11分)
          故當(dāng)xf(x)>0時(shí),?(x)>0.(12分)
          點(diǎn)評(píng):本題主要考查抽象函數(shù)的奇偶性.在證明或判斷一個(gè)函數(shù)的奇偶性時(shí),一定要先看定義域是否關(guān)于原點(diǎn)對(duì)稱,再看f(-x)和f(x)的關(guān)系.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知a>0且a≠1,設(shè)p:函數(shù)y=ax在R上單調(diào)遞增,q:設(shè)函數(shù)y=
          2x-2a,(x≥2a)
          2a,(x<2a)
          ,函數(shù)y≥1恒成立,若p∧q為假,p∨q為真,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•普陀區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
          11-x
          ,記F(x)=2f(x)+g(x)
          (1)求函數(shù)F(x)的定義域D及其零點(diǎn);
          (2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時(shí)的k的取值范圍為
          (-∞,-1)∪(0,1)
          (-∞,-1)∪(0,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
          11-x
          ,記F(x)=2f(x)+g(x)
          (1)求函數(shù)F(x)的定義域D及其零點(diǎn);
          (2)試討論函數(shù)F(x)在定義域D上的單調(diào)性;
          (3)若關(guān)于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內(nèi)僅有一解,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:普陀區(qū)二模 題型:解答題

          已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
          1
          1-x
          ,記F(x)=2f(x)+g(x)
          (1)求函數(shù)F(x)的定義域D及其零點(diǎn);
          (2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案