日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知?jiǎng)又本與與橢圓交于兩不同點(diǎn),且的面積,其中為坐標(biāo)原點(diǎn)

          1)若動(dòng)直線垂直于.求直線的方程;

          2)證明:均為定值;

          3)橢圓上是否存在點(diǎn),,使得三角形面積若存在,判斷的形狀;若不存在,請(qǐng)說(shuō)明理由

          【答案】1;(2)證明見(jiàn)解析;(3)不存在,詳見(jiàn)解析

          【解析】

          1)由題意設(shè)直線,表示出點(diǎn)后,利用即可求得m,即可得解;

          2)分直線斜率是否存在分類(lèi)討論;當(dāng)直線斜率存在時(shí),設(shè)直線,聯(lián)立方程組可得,,由弦長(zhǎng)公式及點(diǎn)到直線的距離公式可得,化簡(jiǎn)后可得,即可得解;

          3)假設(shè)存在點(diǎn),滿足題目要求,由(2)可得,,進(jìn)而可得點(diǎn)、、只能從四個(gè)點(diǎn)中選取三個(gè)不同的點(diǎn),由這三點(diǎn)的連線中必有一條經(jīng)過(guò)原點(diǎn),與題設(shè)矛盾,即可得解.

          1)當(dāng)直線垂直于軸時(shí),設(shè)直線,

          則點(diǎn),,

          所以,解得,所以,

          故所求直線方程為;

          2)當(dāng)直線斜率不存在時(shí),由(1)知,;

          當(dāng)直線斜率存在時(shí),設(shè)直線,

          ,消去,

          所以,

          所以

          ,

          點(diǎn)到直線的距離,

          所以,

          整理可得,滿足,

          所以,

          ;

          綜上,為定值1,為定值2;

          3)假設(shè)存在點(diǎn),滿足題目要求,

          由(2)得,,,,

          ,

          解得,

          所以、只能從中選取,、只能從中選取,

          故點(diǎn)、、只能從四個(gè)點(diǎn)中選取三個(gè)不同的點(diǎn),

          而這三點(diǎn)的連線中必有一條經(jīng)過(guò)原點(diǎn),與矛盾,

          所以橢圓上不存在點(diǎn)、、,使得三角形面積.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在斜三棱柱中,,,,側(cè)面與底面ABC所成的二面角為,EF分別是棱,的中點(diǎn).

          (Ⅰ)證明:平面

          (Ⅱ)求直線與底面ABC所成的角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,分別是橢圓的左右焦點(diǎn),其焦距為,過(guò)的直線與交于,兩點(diǎn),且的周長(zhǎng)是.

          1)求的方程;

          2)若上的動(dòng)點(diǎn),從點(diǎn)(是坐標(biāo)系原點(diǎn))向圓作兩條切線,分別交兩點(diǎn).已知直線,的斜率存在,并分別記為,.

          )求證:為定值;

          )試問(wèn)是否為定值?若是,求出該值;若不是,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為t為參數(shù)),曲線C的參數(shù)方程為θ為參數(shù)).

          1)當(dāng)時(shí),求直線l與曲線C的普通方程;

          2)若直線l與曲線C交于A,B兩點(diǎn),直線l傾斜角的范圍為(0],且P點(diǎn)的直角坐標(biāo)為(0,2),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2020年新年伊始,新型冠狀病毒來(lái)勢(shì)洶洶,疫情使得各地學(xué)生在寒假結(jié)束之后無(wú)法返校,教育部就此提出了線上教學(xué)和遠(yuǎn)程教學(xué),停課不停學(xué)的要求也得到了家長(zhǎng)們的贊同.各地學(xué)校開(kāi)展各式各樣的線上教學(xué),某地學(xué)校為了加強(qiáng)學(xué)生愛(ài)國(guó)教育,擬開(kāi)設(shè)國(guó)學(xué)課,為了了解學(xué)生喜歡國(guó)學(xué)是否與性別有關(guān),該學(xué)校對(duì)100名學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:

          喜歡國(guó)學(xué)

          不喜歡國(guó)學(xué)

          合計(jì)

          男生

          20

          50

          女生

          10

          合計(jì)

          100

          1)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為喜歡國(guó)學(xué)與性別有關(guān)系?

          2)針對(duì)問(wèn)卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡國(guó)學(xué)的人中按分層抽樣的方法隨機(jī)抽取6人成立國(guó)學(xué)宣傳組,并在這6人中任選2人作為宣傳組的組長(zhǎng),設(shè)這兩人中女生人數(shù)為,求的分布列和數(shù)學(xué)期望.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的右焦點(diǎn)為F,直線lC交于M,N兩點(diǎn).

          1)若l過(guò)點(diǎn)F,點(diǎn)M,N到直線y2的距離分別為d1,d2,且,求l的方程;

          2)若點(diǎn)M的坐標(biāo)為(0,1),直線m過(guò)點(diǎn)MC于另一點(diǎn)N′,當(dāng)直線lm的斜率之和為2時(shí),證明:直線NN′過(guò)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某生鮮批發(fā)店每天從蔬菜生產(chǎn)基地以5元/千克購(gòu)進(jìn)某種綠色蔬菜,售價(jià)8元/千克,若每天下午4點(diǎn)以前所購(gòu)進(jìn)的綠色蔬菜沒(méi)有售完,則對(duì)未售出的綠色蔬菜降價(jià)處理,以3元/千克出售.根據(jù)經(jīng)驗(yàn),降價(jià)后能夠把剩余蔬菜全部處理完畢,且當(dāng)天不再進(jìn)貨.該生鮮批發(fā)店整理了過(guò)往30天(每天下午4點(diǎn)以前)這種綠色蔬菜的日銷(xiāo)售量(單位:千克)得到如下統(tǒng)計(jì)數(shù)據(jù)(視頻率為概率)(注:x,y∈N*

          每天下午4點(diǎn)前銷(xiāo)售量

          350

          400

          450

          500

          550

          天數(shù)

          3

          9

          x

          y

          2

          (1)求在未來(lái)3天中,至少有1天下午4點(diǎn)前的銷(xiāo)售量不少于450千克的概率.

          (2)若該生鮮批發(fā)店以當(dāng)天利潤(rùn)期望值為決策依據(jù),當(dāng)購(gòu)進(jìn)450千克比購(gòu)進(jìn)500千克的利潤(rùn)期望值大時(shí),求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】發(fā)展“會(huì)員”、提供優(yōu)惠,成為不少實(shí)體店在網(wǎng)購(gòu)沖擊下吸引客流的重要方式.某連鎖店為了吸引會(huì)員,在2019年春節(jié)期間推出一系列優(yōu)惠促銷(xiāo)活動(dòng).抽獎(jiǎng)返現(xiàn)便是針對(duì)“白金卡會(huì)員”、“金卡會(huì)員”、“銀卡會(huì)員”、“基本會(huì)員”不同級(jí)別的會(huì)員享受不同的優(yōu)惠的一項(xiàng)活動(dòng):“白金卡會(huì)員”、“金卡會(huì)員”、“銀卡會(huì)員”、“基本會(huì)員”分別有4次、3次、2次、1次抽獎(jiǎng)機(jī)會(huì).抽獎(jiǎng)機(jī)如圖:抽獎(jiǎng)?wù)叩谝淮伟聪鲁楠?jiǎng)鍵,在正四面體的頂點(diǎn)出現(xiàn)一個(gè)小球,再次按下抽獎(jiǎng)鍵,小球以相等的可能移向鄰近的頂點(diǎn)之一,再次按下抽獎(jiǎng)鍵,小球又以相等的可能移向鄰近的頂點(diǎn)之一……每一個(gè)頂點(diǎn)上均有一個(gè)發(fā)光器,小球在某點(diǎn)時(shí),該點(diǎn)等可能發(fā)紅光或藍(lán)光,若出現(xiàn)紅光則獲得2個(gè)單位現(xiàn)金,若出現(xiàn)藍(lán)光則獲得3個(gè)單位現(xiàn)金.

          1)求“銀卡會(huì)員”獲得獎(jiǎng)金的分布列;

          2表示第次按下抽獎(jiǎng)鍵,小球出現(xiàn)在點(diǎn)處的概率.

          ,,的值;

          寫(xiě)出關(guān)系式,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).

          (1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大;

          (2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案