【題目】已知F1,F2是橢圓與雙曲線的公共焦點(diǎn),P是它們的一個(gè)公共點(diǎn),且|PF1|<|PF2|,線段PF1的垂直平分線經(jīng)過點(diǎn)F2,若橢圓的離心率為e1,雙曲線的離心率為e2,則的最小值為( )
A.2B.﹣2C.6D.﹣6
【答案】B
【解析】
設(shè),不妨設(shè)點(diǎn)
在第二象限,橢圓和曲線的焦點(diǎn)在
軸上,且它們的長(zhǎng)半軸為
,實(shí)半軸為
,半焦距為
,運(yùn)用橢圓和雙曲線的定義,以及垂直平分線的性質(zhì),結(jié)合離心率和基本不等式,即可求解.
設(shè),不妨設(shè)點(diǎn)
在第二象限,
橢圓和曲線的焦點(diǎn)在軸上,且它們的長(zhǎng)半軸為
,實(shí)半軸為
,半焦距為
,
由橢圓和雙曲線的定義可得,
由線段的垂直平分線過點(diǎn)
,可得
又由點(diǎn)在第二象限,所以
,即
,所以
,
且, 即
,
又由橢圓和雙曲線的離心率,可得,
則
,
當(dāng)且僅當(dāng),即
時(shí),上式取得最小值
.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
底面ABC,
是邊長(zhǎng)為2的正三角形,
,E,F分別為BC,
的中點(diǎn).
1
求證:平面
平面
;
2
求三棱錐
的體積;
3
在線段
上是否存在一點(diǎn)M,使直線MF與平面
沒有公共點(diǎn)?若存在,求
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線平面
,直線
平行四邊形
,四棱錐
的頂點(diǎn)
在平面
上,
,
,
,
,
分別是
與
的中點(diǎn).
(1)求證:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.
(1)求證:AD⊥平面BFED;
(2)點(diǎn)P在線段EF上運(yùn)動(dòng),設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓,點(diǎn)
是圓
內(nèi)一個(gè)定點(diǎn),
是圓
上任意-一點(diǎn),線段
的垂直平分線
和半徑
相交于點(diǎn)
,連接
,記動(dòng)點(diǎn)
的軌跡為曲線
.
(1)求曲線的方程;
(2)若、
是曲線
上關(guān)于原點(diǎn)對(duì)稱的兩個(gè)點(diǎn),點(diǎn)
是曲線
.上任意-一點(diǎn)(不同于點(diǎn)
、
),當(dāng)直線
、
的斜率都存在時(shí),記它們的斜率分別為
、
,求證:
的為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以
為極點(diǎn),
軸為正半軸為極軸建立極坐標(biāo)系.已知曲線
的極坐標(biāo)方程為
,直線
與曲線
相交于
兩點(diǎn),直線
過定點(diǎn)
且傾斜角為
交曲線
于
兩點(diǎn).
(1)把曲線化成直角坐標(biāo)方程,并求
的值;
(2)若成等比數(shù)列,求直線
的傾斜角
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】九章算術(shù)
給出求羨除體積的“術(shù)”是:“并三廣,以深乘之,又以袤乘之,六而一”,其中的“廣”指羨除的三條平行側(cè)棱的長(zhǎng),“深”指一條側(cè)棱到另兩條側(cè)棱所在平面的距離,“袤”指這兩條側(cè)棱所在平行線之間的距離,用現(xiàn)代語(yǔ)言描述:在羨除
中,
,
,
,
,兩條平行線
與
間的距離為h,直線
到平面
的距離為
,則該羨除的體積為
已知某羨除的三視圖如圖所示,則該羨除的體積為
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,
,
為橢圓上不與左右頂點(diǎn)重合的任意一點(diǎn),
,
分別為
的內(nèi)心、重心,當(dāng)
軸時(shí),橢圓的離心率為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有7本不同的書:
(1)全部分給6個(gè)人,每人至少一本,有多少種不同的分法?
(2)全部分給5個(gè)人,每人至少一本,有多少種不同的分法?.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com