【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間與極值;
(2)當(dāng)函數(shù)有兩個極值點(diǎn)時,求實(shí)數(shù)a的取值范圍.
【答案】(1)減區(qū)間,增區(qū)間
,極小值為
,無極大值;(2)
.
【解析】
(1)求出函數(shù)的導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)即可求出單調(diào)區(qū)間以及極值;
(2)求出的導(dǎo)函數(shù),使導(dǎo)函數(shù)有兩個根,采用分離參數(shù)法,結(jié)合(1)中的值域即可求出參數(shù)的取值范圍.
解:(1)由,
則,
令,則
,
令,即
,解得
,
所以函數(shù)的單調(diào)遞增區(qū)間為
;
令,即
,解得
,
所以函數(shù)的單調(diào)遞減區(qū)間為
;
因?yàn)楹瘮?shù)在
上單調(diào)遞減,在
上單調(diào)遞增,
所以函數(shù)在處取得極小值,
極小值
,無極大值.
綜上所述,單調(diào)遞增區(qū)間為;單調(diào)遞減區(qū)間為
;
極小值為2,無極大值;
(2)由,
則,
若有兩個極值點(diǎn),則
有兩個根
即有兩解,即
,
即與
有兩個交點(diǎn),
由(1)可知在
上單調(diào)遞減;在
上單調(diào)遞增,
,所以
;
考慮函數(shù),
,
由洛必達(dá)法則:,
,
,
所以若與
有兩個交點(diǎn),則
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,由直三棱柱和四棱錐
構(gòu)成的幾何體中,
,平面
平面
.
(Ⅰ)求證: ;
(Ⅱ)在線段上是否存在點(diǎn)
,使直線
與平面
所成的角為
?若存在,求
的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,
,
分別是棱
,
的中點(diǎn),點(diǎn)
在
棱上,且
,
,
.
(1)求證:平面
;
(2)當(dāng)時,求三棱錐
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在多邊形中,四邊形
為等腰梯形,
,
,
,四邊形
為直角梯形,
,
.以
為折痕把等腰梯形
折起,使得平面
平面
,如圖2所示.
(1)證明:平面
.
(2)求直線與平面
所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎是一種急性感染性肺炎,其病原體是一種先前未在人類中發(fā)現(xiàn)的新型冠狀病毒,即2019新型冠狀病毒.2020年2月7日,國家衛(wèi)健委決定將“新型冠狀病毒感染的肺炎”暫命名為“新型冠狀病毒肺炎”,簡稱“新冠肺炎”.患者初始癥狀多為發(fā)熱、乏力和干咳,并逐漸出現(xiàn)呼吸困難等嚴(yán)重表現(xiàn).基于目前流行病學(xué)調(diào)查,潛伏期為1~14天,潛伏期具有傳染性,無癥狀感染者也可能成為傳染源.某市為了增強(qiáng)民眾防控病毒的意識,舉行了“預(yù)防新冠病毒知識競賽”網(wǎng)上答題,隨機(jī)抽取人,答題成績統(tǒng)計如圖所示.
(1)由直方圖可認(rèn)為答題者的成績服從正態(tài)分布
,其中
分別為答題者的平均成績
和成績的方差
,那么這
名答題者成績超過
分的人數(shù)估計有多少人?(同一組中的數(shù)據(jù)用該組的區(qū)間中點(diǎn)值作代表)
(2)如果成績超過分的民眾我們認(rèn)為是“防御知識合格者”,用這
名答題者的成績來估計全市的民眾,現(xiàn)從全市中隨機(jī)抽取
人,“防御知識合格者”的人數(shù)為
,求
.(精確到
)
附:①,
;②
,則
,
;③
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,短軸的一個端點(diǎn)到右焦點(diǎn)的距離為2.
(1)求橢圓的方程;
(2)設(shè)分別為橢圓
的左、右頂點(diǎn),如圖,過點(diǎn)
分別作直線
與
,設(shè)直線
交橢圓
于另一點(diǎn)
交橢圓
于另一點(diǎn)
,分別過
和
作橢圓
的兩條切線,且兩條切線交于點(diǎn)
,分別過
和
作橢圓
的兩條切線,且兩條切線交于點(diǎn)
.證明:點(diǎn)
在直線
上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】PM2.5是衡量空氣質(zhì)量的重要指標(biāo),我國采用世衛(wèi)組織的最寬值限定值,即PM2.5日均值在以下空氣質(zhì)量為一級,在
空氣質(zhì)量為二級,超過
為超標(biāo),如圖是某地1月1日至10日的PM2.5(單位:
)的日均值,則下列說法正確的是( )
A.10天中PM2.5日均值最低的是1月3日
B.從1日到6日PM2.5日均值逐漸升高
C.這10天中恰有5天空氣質(zhì)量不超標(biāo)
D.這10天中PM2.5日均值的中位數(shù)是43
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以線段EF為直徑的圓內(nèi)切于圓O:x2+y2=16.
(1)若點(diǎn)F的坐標(biāo)為(﹣2,0),求點(diǎn)E的軌跡C的方程;
(2)在(1)的條件下,軌跡C上存在點(diǎn)T,使得,其中M,N為直線y=kx+b(b≠0)與軌跡C的交點(diǎn),求△MNT的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com