日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示,將一矩形花壇ABCD擴(kuò)建成一個更大的矩形花壇AMPN,要求M在AB的延長線上,N在AD的延長線上,且對角線MN過點C,已知AB=3米,AD=2米,記矩形AMPN的面積為S平方米.

          (1)按下列要求建立函數(shù)關(guān)系;
          (i)設(shè)AN=x米,將S表示為x的函數(shù);
          (ii)設(shè)∠BMC=θ(rad),將S表示為θ的函數(shù).
          (2)請你選用(1)中的一個函數(shù)關(guān)系,求出S的最小值,并求出S取得最小值時AN的長度.

          【答案】
          (1)解:(i)∵Rt△CDN~Rt△MBC,∴ = ,

          ,∴BM=

          由于 ,則AM=

          ∴S=ANAM= ,(x>2)

          (ii)在Rt△MBC中,tanθ= ,∴MB= ,∴AM=3+ ,

          在Rt△CDN中,tanθ= ,∴DN=3tanθ,∴AN=2+3tanθ,

          ∴S=AMAN=(3+ )(2+3tanθ),其中0<θ<


          (2)解:選擇(ii)中關(guān)系式

          ∵S=AMAN=(3+ )(2+3tanθ),(0<θ< );

          ∴S=12+9tanθ+ ≥12+2 =24,

          當(dāng)且僅當(dāng)9tanθ= ,即tanθ= 時,取等號,此時AN=4

          答:當(dāng)AN的長度為4米時,矩形AMPN的面積最小,最小值為24m2


          【解析】(1)求出AN,AM,即可建立函數(shù)關(guān)系;(i)設(shè)AN=x米,先求出AM的長,即可表示出矩形AMPN的面積;(ii)由∠BMC=θ(rad),可以依次表示出AM與AN的長度,即可表示出S關(guān)于θ的函數(shù)表達(dá)式;(2)選擇(ii)中的函數(shù)關(guān)系式,化簡,由基本不等式即可求出最值.
          【考點精析】利用基本不等式在最值問題中的應(yīng)用對題目進(jìn)行判斷即可得到答案,需要熟知用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某中學(xué)舉行了一次環(huán)保知識競賽活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計.按照,的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在的數(shù)據(jù)).

          (1)求樣本容量n和頻率分布直方圖中x、y的值;

          (2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取2名同學(xué)到市政廣場參加環(huán)保知識宣傳的志愿者活動,求所抽取的2名同學(xué)來自不同組的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù), .

          (1)若關(guān)于的不等式上恒成立,求的取值范圍;

          (2)設(shè)函數(shù),若上存在極值,求的取值范圍,并判斷極值的正負(fù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1 , 設(shè)AB1的中點為D,B1C∩BC1=E.

          求證:
          (1)DE∥平面AA1C1C;
          (2)BC1⊥AB1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=ex+2ax(a為常數(shù))的圖象與y軸交于點A,曲線y=f(x)在點A處的切線斜率為﹣1.
          (1)求a的值及函數(shù)f(x)的極值;
          (2)證明:當(dāng)x>0時,x2+1<ex

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的方程為,過點的一條直線與拋物線交于兩點,若拋物線在兩點的切線交于點.

          (1)求點的軌跡方程;

          (2)設(shè)直線與直線的夾角為,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在數(shù)列{an}中,若a1=1,anan+1=( n2 , 則滿足不等式 + + +…+ + <2016的正整數(shù)n的最大值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某種產(chǎn)品的廣告費支出x與銷售額y(單位:萬元)之間有如下對應(yīng)數(shù)據(jù):

          x

          2

          4

          5

          6

          8

          y

          30

          40

          60

          50

          70


          (1)求回歸直線方程;
          (2)試預(yù)測廣告費支出為10萬元時,銷售額多大?
          (3)在已有的五組數(shù)據(jù)中任意抽取兩組,求至少有一組數(shù)據(jù)其預(yù)測值與實際值之差的絕對值不超過5的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】【2017山西三區(qū)八校二!恳阎瘮(shù)(其中, 為常數(shù)且)在處取得極值.

          (Ⅰ)當(dāng)時,求的單調(diào)區(qū)間;

          (Ⅱ)若上的最大值為1,求的值.

          查看答案和解析>>

          同步練習(xí)冊答案