日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)定義在區(qū)間上,,且當(dāng)時(shí),恒有.又?jǐn)?shù)列滿(mǎn)足

          (Ⅰ)證明:上是奇函數(shù);

          (Ⅱ)求的表達(dá)式;

          (III)設(shè)為數(shù)列的前項(xiàng)和,若對(duì)恒成立,求的最小值.

           

          【答案】

          (Ⅰ)見(jiàn)解析(Ⅱ)(III)m的最小值為7

          【解析】本試題主要是考查了函數(shù)與數(shù)列的知識(shí)點(diǎn)的交匯處的運(yùn)用。

          (1)運(yùn)用賦值法,令x=y=0時(shí),則由已知有

          可解得f (0)=0.

          再令x=0,y∈(-1,1),則有,即,

          ∴  f (x)是(-1,1)上的奇函數(shù)

          (2)令x=an,y= -an,于是,

          由已知得2f (an)=f (an+1),

          ,

          從而得到 數(shù)列{f(an)}是以f(a1)=為首項(xiàng),2為公比的等比數(shù)列.

           

          (3)由(II)得f(an+1)=-2n,于.

          然后求解和式,得到結(jié)論。

          解:(Ⅰ)證明:令x=y=0時(shí),則由已知有,

          可解得f (0)=0.

          再令x=0,y∈(-1,1),則有,即,

          ∴  f (x)是(-1,1)上的奇函數(shù).                                            4分

          (Ⅱ)令x=an,y= -an,于是,

          由已知得2f (an)=f (an+1),

          ,

          ∴ 數(shù)列{f(an)}是以f(a1)=為首項(xiàng),2為公比的等比數(shù)列.

                                                          8分

          (III)由(II)得f(an+1)=-2n,于.

          ∴ Tn= b1+ b2+ b3+…+ bn

          ,

          .

          .             9分

          于是

          .

          ∴ k(n+1)<k(n),即k(n)在N*上單調(diào)遞減,         12分

          ∴ k(n)max=k(1)=,

          即m≥.

          ∵ m∈N*,

          ∴ m的最小值為7.               14分

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:2014屆吉林省高二上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)定義在區(qū)間上,,且當(dāng)時(shí),

          恒有.又?jǐn)?shù)列滿(mǎn)足.

          (1)證明:上是奇函數(shù);

          (2)求的表達(dá)式;

          (3)設(shè)為數(shù)列的前項(xiàng)和,若對(duì)恒成立,求的最小值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (14分)已知函數(shù)定義在區(qū)間上,且。又、是其圖像上任意兩點(diǎn)。

          求證:的圖像關(guān)于點(diǎn)成中心對(duì)稱(chēng)圖形;

          設(shè)直線(xiàn)的斜率為,求證:;

          ,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本題滿(mǎn)分18分)本題共有3個(gè)小題,第1小題滿(mǎn)分3分,第2小題滿(mǎn)分8分,第3小題滿(mǎn)分7分.

          已知函數(shù)定義在區(qū)間上,,對(duì)任意,

          恒有成立,又?jǐn)?shù)列滿(mǎn)足

          設(shè)

          (1)在內(nèi)求一個(gè)實(shí)數(shù),使得;

          (2)證明數(shù)列是等比數(shù)列,并求的表達(dá)式和的值;

          (3)設(shè),是否存在,使得對(duì)任意 恒成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本題滿(mǎn)分18分)本題共有3個(gè)小題,第1小題滿(mǎn)分3分,第2小題滿(mǎn)分8分,第3小題滿(mǎn)分7分.

          已知函數(shù)定義在區(qū)間上,,對(duì)任意,

          恒有成立,又?jǐn)?shù)列滿(mǎn)足,

          設(shè)

          (1)在內(nèi)求一個(gè)實(shí)數(shù),使得;

          (2)證明數(shù)列是等比數(shù)列,并求的表達(dá)式和的值;

          (3)是否存在,使得對(duì)任意,都有成立?若存在,求出的最小值;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案