日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,正方形與直角梯形所在平面互相垂直,, .

          (1)求證:平面;
          (2)求四面體的體積.

          (1)證明:見(jiàn)解析;(2)四面體的體積.

          解析試題分析:(1)設(shè)正方形ABCD的中心為O,取BE中點(diǎn)G,連接FG,OG,由中位線定理,我們易得四邊形AFGO是平行四邊形,即FG∥OA,由直線與平面平行的判定定理即可得到AC∥平面BEF;
          (2)由已知中正方形ABCD與直角梯形ADEF所在平面互相垂直,∠ADE=90°,我們可以得到AB⊥平面ADEF,結(jié)合DE=DA=2AF=2.分別計(jì)算棱錐的底面面積和高,代入棱錐體積公式即可求出四面體BDEF的體積.(1)的關(guān)鍵是證明出FG∥OA,(2)的關(guān)鍵是得到AB⊥平面ADEF,即四面體BDEF的高為AB.
          試題解析:(1)證明:設(shè),取中點(diǎn),
          連結(jié),所以,
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/3/jdiy5.png" style="vertical-align:middle;" />,,所以
          從而四邊形是平行四邊形,.             2分
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f2/9/1ivdc4.png" style="vertical-align:middle;" />平面,平面,                4分
          所以平面,即平面.           6分
          (2)解:因?yàn)槠矫?img src="http://thumb.zyjl.cn/pic5/tikupic/49/1/qjnnr.png" style="vertical-align:middle;" />平面,,
          所以平面.                                  8分
          因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/9c/3/jdiy5.png" style="vertical-align:middle;" />,,,
          所以的面積為,                    10分
          所以四面體的體積.           12分
          考點(diǎn):1.直線與平面平行的判定;2.棱錐的體積

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC, AB=AC=BE=2,CD=1。

          (1)設(shè)平面ABE與平面ACD的交線為直線,求證:∥平面BCDE;
          (2)設(shè)F是BC的中點(diǎn),求證:平面AFD⊥平面AFE;
          (3)求幾何體ABCDE的體積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          (本小題滿(mǎn)分12分)在三棱柱中,側(cè)面為矩形,,,的中點(diǎn),交于點(diǎn),側(cè)面.

          (1)證明:;
          (2)若,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          三棱錐P?ABC中,PA⊥平面ABC,AB⊥BC。

          (1)證明:平面PAB⊥平面PBC;
          (2)若,,PB與底面ABC成60°角,分別是的中點(diǎn),是線段上任意一動(dòng)點(diǎn)(可與端點(diǎn)重合),求多面體的體積。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,是以為直徑的半圓上異于點(diǎn)的點(diǎn),矩形所在的平面垂直于該半圓所在平面,且

          (Ⅰ)求證:;
          (Ⅱ)設(shè)平面與半圓弧的另一個(gè)交點(diǎn)為,
          ①求證://;
          ②若,求三棱錐E-ADF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖,四邊形為矩形,平面,上的點(diǎn),且平面.

          (1)求三棱錐的體積;
          (2)設(shè)在線段上,且滿(mǎn)足,試在線段上確定一點(diǎn),使得平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在四棱錐中,底面是正方形,側(cè)面是正三角形,平面底面

          (Ⅰ)如果為線段VC的中點(diǎn),求證:平面;
          (Ⅱ)如果正方形的邊長(zhǎng)為2, 求三棱錐的體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          在如圖所示的幾何體中,四邊形是正方形,平面,分別為,的中點(diǎn),且.

          (Ⅰ)求證:平面平面;
          (Ⅱ)求三棱錐與四棱錐的體積之比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          如圖(1),在等腰直角三角形中,,點(diǎn)分別為線段的中點(diǎn),將分別沿折起,使二面角和二面角都成直二面角,如圖(2)所示。

          (1)求證:;
          (2)求平面與平面所成的銳二面角的余弦值;
          (3)求點(diǎn)到平面的距離。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案