日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若關(guān)于x的方程x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1=0的兩個實數(shù)根x1 , x2滿足x1≤0≤x2≤1,則a2+b2+4a的最小值和最大值分別為(
          A. 和5+4
          B.﹣ 和5+4
          C.﹣ 和12
          D.﹣ 和15﹣4

          【答案】B
          【解析】解:令f(x)=x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1,函數(shù)開口向上,又關(guān)于的方程x2﹣(a2+b2﹣6b)x+a2+b2+2a﹣4b+1=0的兩個實數(shù)根x1 , x2滿足x1≤0≤x2≤1,
          ,即a2+b2+2a﹣4b+1≤0且a+b+1≥0
          即(a+1)2+(b﹣2)2≤4且a+b+1≥0
          表示以(﹣1,2)為圓心,半徑小于等于2的圓平面與a+b+1=0右上部分平面區(qū)域的重疊部分
          又a2+b2+4a=(a+2)2+b2﹣4
          只要在滿足條件區(qū)域中求點(a,b)到點(﹣2,0)距離最大最小即可
          1)求最小
          最小值為(﹣2,0)到a+b+1=0距離的平方減去4,得﹣
          2)求最大
          最大值為(﹣2,0)與(﹣1,2)距離
          原式最大=( +2)2﹣4=5+4
          故選B

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知從橢圓的一個焦點看兩短軸端點所成視角為,且橢圓經(jīng)過.

          (1)求橢圓的方程;

          (2)是否存在實數(shù),使直線與橢圓有兩個不同交點,且為坐標原點),若存在,求出的值.不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,在直四棱柱中,底面是邊長為2的正方形, 分別為線段 的中點.

          (1)求證: ||平面;

          (2)四棱柱的外接球的表面積為,求異面直線所成的角的大小.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某學校高一年級有學生名,高二年級有學生名.現(xiàn)用分層抽樣方法(按高一年級、高二年級分二層)從該校的學生中抽取名學生,調(diào)查他們的數(shù)學學習能力.

          (Ⅰ)高一年級學生中和高二年級學生中各抽取多少學生?

          (Ⅱ)通過一系列的測試,得到這名學生的數(shù)學能力值.分別如表一和表二

          表一:

          高一年級

          人數(shù)

          表二:

          高二年級

          人數(shù)

          ①確定,并在答題紙上完成頻率分布直方圖;

          ②分別估計該校高一年級學生和高二年級學生的數(shù)學能力值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

          ③根據(jù)已完成的頻率分布直方圖,指出該校高一年級學生和高二年級學生的數(shù)學能力值分布特點的不同之處(不用計算,通過觀察直方圖直接回答結(jié)論)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】在鈍角△ABC中,∠A為鈍角,令,若.現(xiàn)給出下面結(jié)論:

          ①當時,點D是△ABC的重心;

          ②記△ABD,△ACD的面積分別為,,當時,;

          ③若點D在△ABC內(nèi)部(不含邊界),則的取值范圍是

          ④若點D在線段BC上(不在端點),則

          ⑤若,其中點E在直線BC上,則當時,

          其中正確的有(寫出所有正確結(jié)論的序號).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知f

          1)如果函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的解析式;

          2)在(1)的條件下,求函數(shù)的圖象在點處的切線方程;

          3)若不等式恒成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖所示的自動通風設施.該設施的下部是等腰梯形,其中為2米,梯形的高為1米, 為3米,上部是個半圓,固定點的中點. 是由電腦控制可以上下滑動的伸縮橫桿(橫桿面積可忽略不計),且滑動過程中始終保持和平行.當位于下方和上方時,通風窗的形狀均為矩形(陰影部分均不通風).

          (1)設之間的距離為)米,試將通風窗的通風面積(平方米)表示成關(guān)于的函數(shù);

          (2)當之間的距離為多少米時,通風窗的通風面積取得最大值?

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知正項數(shù)列{an}的前n項和為Sn , 且滿足4Sn﹣1=an2+2an , n∈N*
          (1)求數(shù)列{an}的通項公式;
          (2)設bn= ,數(shù)列{bn}的前n項和為Tn , 證明: ≤Tn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,ABC,BC邊上的高AM所在的直線方程為x-2y+1=0,A的平分線所在的直線方程為y=0BC相交于點P,若點B的坐標為(1,2).

          (1)分別求ABBC所在直線的方程;

          (2)P點坐標和AC所在直線的方程.

          查看答案和解析>>

          同步練習冊答案