日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】1)求直線在矩陣對應(yīng)變換作用下的直線的方程;

          2)在平面直角坐標(biāo)系中,已知曲線以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為,求曲線C與直線交點的極坐標(biāo).

          【答案】(1);(2).

          【解析】

          (1)設(shè)直線上任意一點,在矩陣M對應(yīng)變換作用下的點,然后矩陣的變換列出關(guān)系式,代入原直線方程即可求出變換后的直線.

          (2)將曲線C和直線方程轉(zhuǎn)化為直角坐標(biāo)系下的直角坐標(biāo)方程,求出交點坐標(biāo),然后再轉(zhuǎn)化為極坐標(biāo)即可.

          (1)設(shè)直線上任意一點,在矩陣M對應(yīng)變換作用下的點

          ,所以,解得.

          因為點在直線上,

          所以,即,

          所以變換后的直線的方程為.

          (2)已知曲線α為參數(shù)),

          轉(zhuǎn)換為直角坐標(biāo)方程為:,

          直線的極坐標(biāo)方程為

          轉(zhuǎn)換為直角坐標(biāo)方程為:.

          ,解得:

          轉(zhuǎn)換為極坐標(biāo)為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一兒童游樂場擬建造一個“蛋筒”型游樂設(shè)施,其軸截面如圖中實線所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延長線上,α為銳角).圓E與AD,BC都相切,且其半徑長為100﹣80sinα米.EO是垂直于AB的一個立柱,則當(dāng)sinα的值設(shè)計為多少時,立柱EO最矮?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】20151210, 我國科學(xué)家屠呦呦教授由于在發(fā)現(xiàn)青蒿素和治療瘧疾的療法上的貢獻(xiàn)獲得諾貝爾醫(yī)學(xué)獎,以青蒿素類藥物為主的聯(lián)合療法已經(jīng)成為世界衛(wèi)生組織推薦的抗瘧疾標(biāo)準(zhǔn)療法,目前,國內(nèi)青蒿人工種植發(fā)展迅速,調(diào)查表明,人工種植的青蒿的長勢與海拔高度、土壤酸堿度、空氣濕度的指標(biāo)有極強(qiáng)的相關(guān)性,現(xiàn)將這三項的指標(biāo)分別記為,并對它們進(jìn)行量化:0表示不合格,1表示臨界合格,2表示合格,再用綜合指標(biāo)的值評定人工種植的青蒿的長勢等級:若,則長勢為一級;若,則長勢為二級;若,則長勢為三級;為了了解目前人工種植的青蒿的長勢情況,研究人員隨機(jī)抽取了10塊青蒿人工種植地,得到如下結(jié)果:

          種植地編號

          種植地編號

          (1)在這10塊青蒿人工種植地中任取兩地,求這兩地的空氣濕度的指標(biāo)相同的概率;

          (2)從長勢等級是一級的人工種植地中任取一地,其綜合指標(biāo)為,從長勢等級不是一級的人工種植地中任取一地,其綜合指標(biāo)為,記隨機(jī)變量,求的分布列及其數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(2016·重慶高二檢測)如圖,三棱柱ABC-A1B1C1側(cè)棱垂直底面,ACB=90°AC=BC=AA1,D是棱AA1的中點.

          (1)證明平面BDC1⊥平面BDC.

          (2)平面BDC1分此棱柱為兩部分求這兩部分體積的比.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某教育主管部門到一所中學(xué)檢查學(xué)生的體質(zhì)健康情況.從全體學(xué)生中,隨機(jī)抽取12名進(jìn)行體質(zhì)健康測試,測試成績(百分制)以莖葉圖形式表示如圖所示.根據(jù)學(xué)生體質(zhì)健康標(biāo)準(zhǔn),成績不低于76的為優(yōu)良.

          (1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
          (2)將頻率視為概率.根據(jù)樣本估計總體的思想,在該校學(xué)生中任選3人進(jìn)行體質(zhì)健康測試,求至少有1人成績是“優(yōu)良”的概率;
          (3)從抽取的12人中隨機(jī)選取3人,記ξ表示成績“優(yōu)良”的學(xué)生人數(shù),求ξ的分布列及期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】大型綜藝節(jié)目《最強(qiáng)大腦》中,有一個游戲叫做盲擰魔方,就是玩家先觀察魔方狀態(tài)并進(jìn)行記憶,記住后蒙住眼睛快速還原魔方,盲擰在外人看來很神奇,其實原理是十分簡單的,要學(xué)會盲擰也是很容易的.根據(jù)調(diào)查顯示,是否喜歡盲擰魔方與性別有關(guān).為了驗證這個結(jié)論,某興趣小組隨機(jī)抽取了50名魔方愛好者進(jìn)行調(diào)查,得到的情況如下表所示:

          喜歡盲擰

          不喜歡盲擰

          總計

          22

          30

          12

          總計

          50

          1

          并邀請這30名男生參加盲擰三階魔方比賽,其完成情況如下表所示:

          成功完成時間(分鐘)

          [0,10)

          [10,20)

          [20,30)

          [30,40]

          人數(shù)

          10

          10

          5

          5

          2

          (1)將表1補(bǔ)充完整,并判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為是否喜歡盲擰與性別有關(guān)?

          (2)根據(jù)表2中的數(shù)據(jù),求這30名男生成功完成盲擰的平均時間(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代替);

          (3)現(xiàn)從表2中成功完成時間在[0,10)內(nèi)的10名男生中任意抽取3人對他們的盲擰情況進(jìn)行視頻記錄,記成功完成時間在[0,10)內(nèi)的甲、乙、丙3人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.

          附參考公式及數(shù)據(jù):,其中.

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓C: (a>b>0)的焦距為4,其短軸的兩個端點與長軸的一個端點構(gòu)成正三角形.
          (1)求橢圓C的標(biāo)準(zhǔn)方程;
          (2)設(shè)F為橢圓C的左焦點,M為直線x=﹣3上任意一點,過F作MF的垂線交橢圓C于點P,Q.證明:OM經(jīng)過線段PQ的中點N.(其中O為坐標(biāo)原點)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某商場舉行促銷活動,有兩個摸獎箱,箱內(nèi)有一個“”號球,兩個“”號球,三個“”號球、四個無號球,箱內(nèi)有五個“”號球,五個“”號球,每次摸獎后放回,每位顧客消費額滿元有一次箱內(nèi)摸獎機(jī)會,消費額滿元有一次箱內(nèi)摸獎機(jī)會,摸得有數(shù)字的球則中獎,“”號球獎元,“”號球獎元,“”號球獎元,摸得無號球則沒有獎金。

          (1)經(jīng)統(tǒng)計,顧客消費額服從正態(tài)分布,某天有位顧客,請估計消費額(單位:元)在區(qū)間內(nèi)并中獎的人數(shù).(結(jié)果四舍五入取整數(shù))

          附:若,則,.

          (2)某三位顧客各有一次箱內(nèi)摸獎機(jī)會,求其中中獎人數(shù)的分布列.

          (3)某顧客消費額為元,有兩種摸獎方法,

          方法一:三次箱內(nèi)摸獎機(jī)會;

          方法二:一次箱內(nèi)摸獎機(jī)會.

          請問:這位顧客選哪一種方法所得獎金的期望值較大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=lnx+x2﹣2ax+1(a為常數(shù))
          (1)討論函數(shù)f(x)的單調(diào)性;
          (2)若對任意的a∈(1, ),都存在x0∈(0,1]使得不等式f(x0)+lna>m(a﹣a2)成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案