【題目】如圖,三棱柱中,
,
,
平面
.
(1)求證:;
(2)若,直線
與平面
所成的角為
,求二面角
的余弦值.
【答案】(1)證明見解析(2)
【解析】
(1)首先由平面
證得
,根據(jù)四邊形
是菱形證得
,由此證得
平面
,進(jìn)而證得
.
(2)首先根據(jù)“直線與平面
所成的角為
”得到
.以
為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,通過平面
的法向量和平面
的法向量,計(jì)算出二面角
的余弦值.
(1)證明:因?yàn)?/span>平面
,所以
,
因?yàn)?/span>,所以四邊形
是菱形,所以
,
因?yàn)?/span>,所以
平面
,
所以.
(2)因?yàn)?/span>與平面
所成的角為
,
,
所以與平面
所成的角為
,
因?yàn)?/span>平面
,
所以與平面
所成的角為
,
所以,
令,則
,
,
,
以為坐標(biāo)原點(diǎn),分別以
,
,
為
,
,
軸建立如圖空間直角坐標(biāo)系,
則,
,
,
,
,
因?yàn)?/span>,
所以,平面
的一個(gè)法向量為
,
設(shè)平面的一個(gè)法向量為
,
則,即
,
令,則
,
,
,
所以,
所以二面角的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點(diǎn)為
,過
的直線
與
相交于
兩點(diǎn).
(1)若,求
的方程;
(2)設(shè)過點(diǎn)作
軸的垂線交
于另一點(diǎn)
,若
是
的外心,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出的普通方程及
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在
上,點(diǎn)
在
上,求
的最小值及此時(shí)點(diǎn)
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時(shí)間的統(tǒng)計(jì)數(shù)據(jù)如下:
超過1小時(shí) | 不超過1小時(shí) | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時(shí)間是否超過1小時(shí)與性別有關(guān)?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《周髀算經(jīng)》中給出了勾股定理的絕妙證明.如圖是趙爽弦圖及注文.弦圖是一個(gè)以勾股形之弦為邊的正方形,其面積稱為弦實(shí).圖中包含四個(gè)全等的勾股形及一個(gè)小正方形,分別涂成朱色及黃色,其面積稱為朱實(shí)、黃實(shí).由2×勾×股+(股-勾)2=4×朱實(shí)+黃實(shí)=弦實(shí),化簡(jiǎn)得勾2+股2=弦2.若圖中勾股形的勾股比為,向弦圖內(nèi)隨機(jī)拋擲100顆圖釘(大小忽略不計(jì)),則落在黃色圖形內(nèi)的圖釘顆數(shù)大約為( )(參考數(shù)據(jù):
,
)
A.2B.4C.6D.8
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定橢圓C:(
),稱圓心在原點(diǎn)O,半徑為
的圓是橢圓C的“衛(wèi)星圓”.若橢圓C的離心率
,點(diǎn)
在C上.
(1)求橢圓C的方程和其“衛(wèi)星圓”方程;
(2)點(diǎn)P是橢圓C的“衛(wèi)星圓”上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作直線,
使得
,與橢圓C都只有一個(gè)交點(diǎn),且
,
分別交其“衛(wèi)星圓”于點(diǎn)M,N,證明:弦長(zhǎng)
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知梯形中,
,
,
,四邊形
為矩形,
,平面
平面
.
(Ⅰ)求證:平面
;
(Ⅱ)求平面與平面
所成銳二面角的余弦值;
(Ⅲ)在線段上是否存在點(diǎn)
,使得直線
與平面
所成角的正弦值為
,若存在,求出線段
的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已如橢圓E:(
)的離心率為
,點(diǎn)
在E上.
(1)求E的方程:
(2)斜率不為0的直線l經(jīng)過點(diǎn),且與E交于P,Q兩點(diǎn),試問:是否存在定點(diǎn)C,使得
?若存在,求C的坐標(biāo):若不存在,請(qǐng)說明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)滿足
,且
為偶函數(shù),若
在
內(nèi)單調(diào)遞減,則下面結(jié)論正確的是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com